Paradoxical sleep deprivation decreases serum testosterone and Leydig cells in male rats

Main Article Content

Fitranto Arjadi
Sri Kadarsih Soejono
Mulyono Pangestu

Abstract

BACKGROUND Chronic stress increases glucocorticoid levels and accelerates reduction in Leydig cells functions and numbers. Chronic stress models in the working place comprise sleep deprivation, sedentary stress, and physical stress. The aim of this study was to evaluate the effect of various work stress models, such as stress from paradoxical sleep deprivation (PSD), immobilization, and footshock, on serum testosterone levels and number of Leydig cells in male albino rats. METHODS This study was of experimental randomized post-test only with control group design using 24 male Wistar albino rats (Rattus norvegicus). The sample was divided into 4 groups: K1 (control), K2 (PSD), K3 (immobilization) and K4 (footshock), receiving treatment for 25 days. Measured parameters were serum testosterone level and Leydig cell number. Analysis of variance (ANOVA) was used for statistical analysis, followed by post hoc LSD. RESULTS Mean serum testosterone levels (0.07 ± 0.08 ng/ml) and Leydig cell numbers (4.22 ± l0.96) were lowest in the PSD stress model. Serum testosterone levels differed significantly between controls and PSD group (p=0.014), while there was a significant difference in numbers of Leydig cells between footshock stress and PSD (p=0.011) and between the three stress groups and controls (p=0.006). CONCLUSION This study demonstrated that PSD, immobilization and footshock stress significantly decreased serum testosterone levels and number of Leydig cells in male albino rats (Rattus norvegicus). The mechanism by which PSD affects serum testosterone is still unclear.

Article Details

How to Cite
Arjadi, F., Soejono, S. K., & Pangestu, M. (2014). Paradoxical sleep deprivation decreases serum testosterone and Leydig cells in male rats. Universa Medicina, 33(1), 27–35. https://doi.org/10.18051/UnivMed.2014.v33.27-35
Section
Review Article

References

Tjiptoherijanto P. Proyeksi penduduk, angkatan

kerja, tenaga kerja, dan peran serikat pekerja

dalam peningkatan kesejahteraan. Majalah

Perencanaan Pembangunan 2001;23:1-10.

Sheiner EK, Eyal S, Refael C, Gad P, Ilana SV.

Potential association between male infertility and

occupational psychological stress. J Occup Env

Med 2002;44:1093-9.

Wang FF, Wang Q, Chen Y, Lin Q, Gao HB,

Zhang P. Chronic stress induces ageingassociated

degeneration in rat Leydig cells. Asian

J Androl 2012;14:643-8.

Gao HB, Ming-Han T, Yan-Qin H, Hai-Yan Y,

Qiang-Su G, Ren-Sha G, et al. Mechanisms of

glucocorticoid-induced Leydig cell apoptosis.

Mol Cell Endocrinol 2003;199:153-63.

Agarwal A, Sekhon LH. Antioxidant therapy on

male fertility. Human Fertility 2010;13:217-25.

Chigurupati S, Tae GS, Dong HH, Justin DL,

Mohamed RM, Jason S, et al. Lifelong running

reduces oxidative stress and degenerative

changes in the testes of mice. J Endocrinol 2008;

:333-41.

Hu G, Lian Q, Lin H, Latif SA, Morris DJ, Hardy

MP, et al. Rapid mechanisms of glucocorticoid

signaling in the Leydig cell. J Steroids 2008;73:

-24.

Hipolide DC, Suchecki D, Pimentel

CP, Chiconelli F, Sergio T, Luz J. Paradoxical

sleep deprivation and sleep recovery: effects on

the hypothalamic-pituitary-adrenal axis activity,

energy balance and body composition of rats. J

Neuroendocrinol 2006;18:231-8.

Kvetnansky R, McCarty R. Stress

immobilization. Endocrinol 2007;2:503-6.

Cui R, Li B, Suemaru K, Araki H. Differential

effects of psychological and physical stress on

the sleep pattern in rats. Act Medic Okayama

;61:319-27.

Andersen ML, Bignotto M, Machado RB, Tufik

S. Different stress modalities result in distinct

steroid hormone responses by male rats.

Brazilian J Med Biol Res 2004;37:791-7.

Al-Damegh MA. Stress-induced changes in

testosterone secretion in male rats: role of

oxidative stress and modulation by antioxidants.

Open J Animal Sci 2014;4:70-8.

Machado RB, Suchecki D, Sergio T. Comparison

of the sleep pattern throughout a protocol of

chronic sleep restriction induced by two methods

of paradoxical sleep deprivation. Brain Res Bull

;70:213–20.

Joels M, Henk K, Harmen JK, Paul JL. Chronic

stress: implications for neuronal morphology,

function and neurogenesis. Neuroendocrinol

;28:72-96.

Dahlan MS. Statistik untuk kedokteran dan

kesehatan. Jakarta: Salemba Medika;2008.

Chen Y, Qian W, Fei FW, Hui BG, Ping Z. Stress

induces glucocorticoid-mediated apoptosis of rat

Leydig cells in vivo. Stress 2012;15:74-84.

Alvarenga TA, Monica LA, Javier VM, Sergio

T. Food restriction or sleep deprivation: which

exerts a greater influence on the sexual behaviour

of male rats? Behavioral Brain Res 2009;202:

-71.

Hardy PM, Hui-Bao G, Qiang D, Renshan G,

Qiang W, Wei RC, et al. Stress hormone and

male reproductive function. Cell Tissue Res

;322:147-53.

Patel R, McIntosh L, McLaughlin J, Brooke S,

Nimon V, Sapolsky R. Disruptive effects of

glucocorticoids on glutathione peroxidase

biochemistry in hippocampal cultures. J

Neurochem 2002;82:118-25.

Kregel KC, Zhang HJ. An integrated view of

oxidative stress in aging: basic mechanisms,

functional effects, and pathological

considerations. Am J Physiol Regul Integr Comp

Physiol 2007;292:R18-36.

Tufik S, Andersen ML, Bittencourt LRA, Mello

MT. Paradoxical sleep deprivation:

neurochemical, hormonal and behavioral

alterations. Evidence from 30 years of research.

An Acad Bras Sci 2009;81:521-38.

Maslachah L, Rahmi S, Rahma K. Hambatan

produksi reactive oxygen species radikal

superoksida (O2) oleh antioksidan vitamin E

pada tikus putih (Rattus norvegicus) yang

menerima stressor renjatan listrik. Media

Kedokteran Hewan 2008;24:21-6.

Galvão MOL, Rita SC, Suzi EK, Sergio T,

Deborah S. Paradoxical sleep deprivation

activates hypothalamic nuclei that regulate food

intake and stress response.

Psychoneuroendocrinol 2009;34:1176-83.

Tsutsui K, George EB, Takayoshi U, Etsuko S,

Hong Y, Tomohiro O, et al. The general and

comparative biology of gonadotropin-inhibitory

hormone (GnIH). Endocrinology 2007;153:365-

Frungieri MB, Mayerhofer A, Zitta K, Pignataro

OP, Calandra RS, Calvar SIG. Direct effect of

melatonin on Syrian hamster testes: melatonin

subtype 1a receptors, inhibition of androgen

production, and interaction with the local

corticotropin-releasing hormone system.

Endocrinology 2005;146:1541-52.

Wu JL, Wu RSC, Yang JG, Huang CC, Chen

KB, Fang KH, et al. Effects of sleep deprivation

on serum testosterone concentrations in the rat.

Neuroscience Lett 2011;494:124-9.

Whirledge S, Cidlowski JA. Glucocorticoids,

stress, and fertility. Minerva Endocrinol 2010;35:

-25.

Sriraman V, Sairam MR, Rao AJ. Evaluation of

relative roles of LH and FSH in regulation of

differentiation of Leydig cells using an ethane

,2-dimethylsulfonate-treated adult rat model. J

Endocrinol 2003;176:151-61.

Gautam DK, Misro MM, Chaki SP, Sehgal N.

H2O2 at physiological concentrations modulates

Leydig cell function inducing oxidative stress

and apoptosis. Apopt 2006;11:39-46.

Maheshwari A, Man MM, Archana A, Rajnesh

S, Deoki N. Pathway involved in testicular germ

cell apoptosis induced by H2O2 in vitro. FEBS J

;870-81.

Univ Med