Angiogenesis in rheumatoid arthritis: epidemiology, pathogenesis, signal transduction pathways, and nano-targeted therapeutic strategies

Main Article Content

Joan Blin
Mohd Rohaizad Md Roduan
Roslida Abd Hamid

Abstract

Angiogenesis is the formation of new blood vessels from existing vessels. In rheumatoid arthritis (RA), new blood vessels maintain a chronic inflammatory state by transporting inflammatory cells to the site of inflammation.  Rheumatoid arthritis is a chronic autoimmune disorder that affects approximately 1% of the global population, with a higher prevalence in women. It is characterized by synovial inflammation, hyperplasia, and angiogenesis, leading to joint destruction. Understanding the pathogenesis of RA, particularly the mechanisms driving synovial angiogenesis, is crucial for the development of targeted therapies. Fibroblast-like synoviocytes (FLS) and endothelial cells play key roles in RA pathogenesis by secreting pro-inflammatory cytokines and growth factors, such as tumor necrosis factor (TNF)-alpha, interleukin (IL)-1β, IL-6, and vascular endothelial growth factor (VEGF). These mediators activate multiple signaling pathways, including VEGF, nuclear factor kappa light chain enhancer of activated B cells (NF-κB), phosphatidylinositol-3 kinase (PI3K)/AKT, mitogen-activated protein kinase (MAPK), wingless-related integration site (Wnt), and the Janus kinase (JAK)/ signal transducer and activator of transcription (STAT), which contribute to synovial angiogenesis, inflammation, and joint damage. A literature search was conducted on PubMed, ScienceDirect, SpringerLink, and Google Scholar databases for sources published in English from 2015 to 2025, using the terms “nanotechnology rheumatoid arthritis,” “angiogenesis,” “synovial inflammation,” “pro-inflammatory cytokines,” “disease-modifying antirheumatic drugs,” and “signal transduction pathways”. Current treatments for RA include nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, and disease-modifying antirheumatic drugs (DMARDs) (conventional synthetic, biological, and targeted synthetic). An informative overview of anti-angiogenic strategies for treating RA, which may provide new perspectives for developing nanoagents, is opening new horizons in the fight against RA. This review covers RA epidemiology, pathogenesis, and signal transduction, as well as current therapies and their limitations, highlighting the need to develop new treatment strategies that target angiogenesis in RA.

Article Details

Section

Review Article

How to Cite

Angiogenesis in rheumatoid arthritis: epidemiology, pathogenesis, signal transduction pathways, and nano-targeted therapeutic strategies. (2025). Universa Medicina, 44(3). https://doi.org/10.18051/UnivMed.2025.v44.%p

References

1. Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet 2016;388:2023–38. doi: 10.1038/nrdp.2018.1.

2. Cajas LJ, Casallas A, Medina YF, Quintana G, Rondón F. Pannus and rheumatoid arthritis: Historic and pathophysiological evolution. Rev Colomb Reumatol 2019;26:118–28. doi: 10.1016/j.rcreue.2018.10.005.

3. Tseng C-C, Chen Y-J, Chang W-A, et al. Dual role of chondrocytes in rheumatoid arthritis: the chicken and the egg. Int J Mol Sci 2020;21:1071. doi: 10.3390/ijms21031071.

4. Law ST, Taylor PC. Role of biological agents in treatment of rheumatoid arthritis. Pharmacol Res 2019;150:104497. doi: 10.1016/j.phrs.2019.104497.

5. Venetsanopoulou AI, Alamanos Y, Voulgari PV, Drosos AA. Epidemiology and risk factors for rheumatoid arthritis development. Mediterr J Rheumatol 2023;34:404–13. doi: 10.31138/mjr.301223.eaf.

6. Kobak S, Bes C. An autumn tale: geriatric rheumatoid arthritis. Ther Adv Musculoskelet Dis 2018;10:3–11. doi: 10.1177/1759720x17740075.

7. Osiri M, Maetzel A. The economic burden of rheumatoid arthritis: Asia/Thailand perspective. In: Preedy VR; Watson RR, editors. Handbook of disease burdens and quality of life measures. New York: Springer; 2010. p. 1733–50. doi: 10.1007/978-0-387-78665-0_101.

8. Liu S, Li Y, Xia L, Shen H, Lu J. IL-35 prevents bone loss through promotion of bone formation and angiogenesis in rheumatoid arthritis. Clin Exp Rheumatol 2019;37:820–25.

9. Leblond A, Allanore Y, Avouac J. Targeting synovial neoangiogenesis in rheumatoid arthritis. Autoimmun Rev 2017;16:594–601. doi: 10.1016/j.autrev.2017.04.005.

10. Cantatore FP, Maruotti N, Corrado A, Ribatti D. Anti-angiogenic effects of biotechnological therapies in rheumatic diseases. Biologics 2017;11:123–28. doi: 10.2147/btt.S143674.

11. van Vollenhoven RF. Sex differences in rheumatoid arthritis: more than meets the eye. BMC Med 2009;7:1–4. doi: 10.1186/1741-7015-7-12.

12. Singh AK, Umar S, Riegsecker S, Chourasia M, Ahmed S. Regulation of transforming growth factor β–activated kinase activation by epigallocatechin‐3‐gallate in rheumatoid arthritis synovial fibroblasts: suppression of K63‐linked autoubiquitination of tumor necrosis factor receptor–associated factor 6. Arthritis Rheumatol 2016;68:347–58. doi: 10.1002/art.39447.

13. Tanaka Y. Current concepts in the management of rheumatoid arthritis. Korean J Intern Med 2016;31:210–8. doi: 10.3904/kjim.2015.137.

14. Nguyen DX, Cotton A, Attipoe L, Ciurtin C, Doré CJ, Ehrenstein MR. Regulatory T cells as a biomarker for response to adalimumab in rheumatoid arthritis. J Allergy Clin Immunol 2018;142:978–80.e9. doi: 10.1016/j.jaci.2018.04.026.

15. Favalli EG, Raimondo MG, Becciolini A, Crotti C, Biggioggero M, Caporali R. The management of first-line biologic therapy failures in rheumatoid arthritis: current practice and future perspectives. Autoimmun Rev 2017;16:1185–95. doi: 10.1016/j.autrev.2017.10.002.

16. Rigante D, Bosco A, Esposito S. The etiology of juvenile idiopathic arthritis. Clin Rev Allergy Immunol 2015;49:253–61. doi: 10.1007/s12016-014-8460-9.

17. Cai Y, Zhang J, Liang J, et al. The burden of rheumatoid arthritis: findings from the 2019 global burden of diseases study and forecasts for 2030 by Bayesian age-period-cohort analysis. J Clin Med 2023;12:1291. doi: 10.3390/jcm12041291.

18. Ong SG, Ding HJ, Zuhanis AH, Aida AA, Norazizah IW. Predictors and radiological characteristics of rheumatoid arthritis-associated interstitial lung disease in a multi-ethnic Malaysian cohort. Med J Malaysia 2022;77:292–99.

19. Ma SN, Zaman Huri H, Yahya F. Drug-related problems in patients with rheumatoid arthritis. Ther Clin Risk Manag 2019;15:505–24. doi: 10.2147/tcrm.s194921.

20. Ministry of Health Malaysia. Clinical practice guidelines: management of rheumatoid arthritis. Putrajaya, Malaysia: Malaysia Health Technology Assessment Section (MaHTAS); 2019.

21. Smith MD. The normal synovium. Open Rheumatol J 2011;5:100. doi: 10.2174/1874312901105010100.

22. Bustamante MF, Garcia-Carbonell R, Whisenant KD, Guma M. Fibroblast-like synoviocyte metabolism in the pathogenesis of rheumatoid arthritis. Arthritis Res Ther 2017;19:1–12. doi: 10.1186/s13075-017-1303-3.

23. Bartok B, Firestein GS. Fibroblast‐like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev 2010;233:233–55. doi: 10.1111/j.0105-2896.2009.00859.x.

24. Wang X, Fan D, Cao X, et al. The role of reactive oxygen species in the rheumatoid arthritis-associated synovial microenvironment. Antioxidants (Basel) 2022;11:1153. doi: 10.3390/antiox11061153.

25. Choy E. Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology 2012;51:v3–v11. doi: 10.1093/rheumatology/kes113.

26. Rana AK, Li Y, Dang Q, Yang F. Monocytes in rheumatoid arthritis: Circulating precursors of macrophages and osteoclasts and, their heterogeneity and plasticity role in RA pathogenesis. Int Immunopharmacol 2018;65:348–59. doi: 10.1016/j.intimp.2018.10.016.

27. Bugatti S, Bozzalla-Cassione E, De Stefano L, Manzo A. Established rheumatoid arthritis. The pathogenic aspects. Best Pract Res Clin Rheumatol 2019;33:101478. doi: 10.1016/j.berh.2019.101478.

28. Konisti S, Kiriakidis S, Paleolog EM. Hypoxia--a key regulator of angiogenesis and inflammation in rheumatoid arthritis. Nat Rev Rheumatol 2012;8:153–62. doi: 10.1038/nrrheum.2011.205.

29. Guo K, Bu X, Yang C, et al. Treatment effects of the second-generation tyrosine kinase inhibitor dasatinib on autoimmune arthritis. Front Immunol 2019;9:3133. doi: 10.3389/fimmu.2018.03133.

30. Balogh E, Biniecka M, Fearon U, Veale DJ, Szekanecz Z. Angiogenesis in inflammatory arthritis. Isr Med Assoc J 2019;21:345–52.

31. Alam J, Jantan I, Bukhari SNA. Rheumatoid arthritis: recent advances on its etiology, role of cytokines and pharmacotherapy. Biomed Pharmacother 2017;92:615–33. doi: 10.1016/j.biopha.2017.05.055.

32. MacDonald IJ, Liu SC, Su CM, Wang YH, Tsai CH, Tang CH. Implications of angiogenesis involvement in arthritis. Int J Mol Cell Med 2018;19:2012. doi: 10.3390/ijms19072012.

33. Caliogna L, Berni M, Torriani C, et al. Pathogenesis of osteoarthritis, rheumatoid arthritis, and hemophilic arthropathy: the role of angiogenesis. Haemophilia 2024;30:1256–64. doi: 10.1111/hae.15097.

34. Zhu D, Zhao J, Lou A, et al. Transforming growth factor β1 promotes fibroblast-like synoviocytes migration and invasion via TGF-β1/Smad signaling in rheumatoid arthritis. Mol Cell Biochem 2019;459:141–50. doi: 10.1007/s11010-019-03557-0.

35. Tao L, Xue JF. Effects of TNF-α in rheumatoid arthritis via attenuating α1 (I) collagen promoter. Eur Rev Med Pharmacol Sci 2018;22: 3905-12. doi: 10.26355/eurrev_201806_15275.

36. Narazaki M, Tanaka T, Kishimoto T. The role and therapeutic targeting of IL-6 in rheumatoid arthritis. Expert Rev Clin Immunol 2017;13:535–51. doi: 10.1080/1744666x.2017.1295850.

37. Elemam NM, Hannawi S, Maghazachi AA. Role of chemokines and chemokine receptors in rheumatoid arthritis. Immunotargets Ther 2020; 9:43-5.doi: 10.2147/ITT.S243636:43–56. doi: 10.2147/ITT.S243636.

38. Yeo L, Adlard N, Biehl M, et al. Expression of chemokines CXCL4 and CXCL7 by synovial macrophages defines an early stage of rheumatoid arthritis. Ann Rheum Dis 2016;75:763–71. doi: 10.1136/annrheumdis-2014-206921.

39. Li H, Wu QY, Teng XH, et al. The pathogenesis and regulatory role of HIF-1 in rheumatoid arthritis. Cent Eur J Immunol 2023;48:338–45. doi: 10.5114/ceji.2023.134217.

40. Jusman SWA, Sari DH, Ningsih SS, Hardiany NS, Sadikin M. Role of hypoxia inducible factor-1 alpha (HIF-1α) in cytoglobin expression and fibroblast proliferation of keloids. Kobe J Med Sci 2019;65:E10-18..

41. Bian Y, Xiang Z, Wang Y, et al. Immunomodulatory roles of metalloproteinases in rheumatoid arthritis. Front Pharmacol 2023;14:1285455. doi: 10.3389/fphar.2023.1285455.

42. Khodadust F, Ezdoglian A, Steinz MM, et al. Systematic review: targeted molecular imaging of angiogenesis and its mediators in rheumatoid arthritis. Int J Mol Sci 2022;23:7071. doi: 10.3390/ijms23137071.

43. Mangoni AA, Zinellu A. A systematic review and meta-analysis of circulating adhesion molecules in rheumatoid arthritis. Inflamm Res 2024;73:305–27. doi: 10.1007/s00011-023-01837-6.

44. Woods JM, Mogollon A, Amin MA, Martinez RJ, Koch AE. The role of COX-2 in angiogenesis and rheumatoid arthritis. Exp Mol Pathol 2003;74:282–90. doi: 10.1016/s0014-4800(03)00019-4.

45. Elshabrawy HA, Chen Z, Volin MV, Ravella S, Virupannavar S, Shahrara S. The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis 2015;18:433–48. doi: 10.1007/s10456-015-9477-2.

46. Orr C, Vieira-Sousa E, Boyle DL, et al. Synovial tissue research: a state-of-the-art review. Nat Rev Rheumatol 2017;13:463–75. doi: 10.1038/nrrheum.2017.115.

47. Colombo F, Durigutto P, De Maso L, et al. Targeting CD34+ cells of the inflamed synovial endothelium by guided nanoparticles for the treatment of rheumatoid arthritis. J Autoimmun 2019;103:102288. doi: 10.1016/j.jaut.2019.05.016.

48. Gao C, Song XD, Chen FH, Wei GL, Guo CY. The protective effect of natural medicines in rheumatoid arthritis via inhibit angiogenesis. Front Pharmacol 2024;15:1380098. doi: 10.3389/fphar.2024.1380098.

49. Korb-Pap A, Bertrand J, Sherwood J, Pap T. Stable activation of fibroblasts in rheumatic arthritis—causes and consequences. Rheumatology 2016;55:ii64–ii67. doi: 10.1093/rheumatology/kew347.

50. De Oliveira PG, Farinon M, Sanchez-Lopez E, Miyamoto S, Guma M. Fibroblast-like synoviocytes glucose metabolism as a therapeutic target in rheumatoid arthritis. Front Immunol 2019;10:1743. doi: 10.3389/fimmu.2019.01743.

51. Alivernini S, Firestein GS, McInnes IB. The pathogenesis of rheumatoid arthritis. Immunity 2022;55:2255–70. doi: 10.1016/j.immuni.2022.11.009.

52. Lee A, Choi SJ, Park K, et al. Detection of active matrix metalloproteinase-3 in serum and fibroblast-like synoviocytes of collagen-induced arthritis mice. Bioconjug Chem 2013;24:1068–74. doi: 10.1021/bc4001273.

53. Kim KW, Kim HR, Kim BM, Cho ML, Lee SH. Th17 cytokines regulate osteoclastogenesis in rheumatoid arthritis. Am J Pathol 2015;185:3011–24. doi: 10.1016/j.ajpath.2015.07.017.

54. Tu J, Hong W, Zhang P, Wang X, Körner H, Wei W. Ontology and function of fibroblast-like and macrophage-like synoviocytes: how do they talk to each other and can they Be targeted for rheumatoid arthritis therapy? Front Immunol 2018;9:1467. doi: 10.3389/fimmu.2018.01467.

55. Krock BL, Skuli N, Simon MC. Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2011;2:1117–33. doi: 10.1177/1947601911423654.

56. Kemp SS, Lin PK, Sun Z, et al. Molecular basis for pericyte-induced capillary tube network assembly and maturation. Front Cell Dev Biol 2022;10:943533. doi: 10.3389/fcell.2022.943533.

57. Kelly S, Bombardieri M, Humby F, et al. Angiogenic gene expression and vascular density are reflected in ultrasonographic features of synovitis in early rheumatoid arthritis: an observational study. Arthritis Res Ther 2015;17:58. doi: 10.1186/s13075-015-0567-8.

58. Le THV, Kwon SM. Vascular endothelial growth factor biology and its potential as a therapeutic target in rheumatic diseases. Int J Mol Sci 2021;22: 5387. doi: 10.3390/ijms22105387.

59. Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell 2019;176:1248–64. doi: 10.1016/j.cell.2019.01.021.

60. Failla CM, Carbone ML, Ramondino C, Bruni E, Orecchia A. Vascular endothelial growth factor (VEGF) family and the immune system: activators or inhibitors? Biomedicines 2024;13:6. doi: 10.3390/biomedicines13010006.

61. Peach CJ, Mignone VW, Arruda MA, et al. Molecular pharmacology of VEGF-A isoforms: binding and signalling at VEGFR2. Int J Mol Sci 2018;19:1264. doi: 10.3390/ijms19041264.

62. Wang X, Bove AM, Simone G, Ma B. Molecular bases of VEGFR-2-mediated physiological function and pathological role. Front Cell Dev Biol 2020;8:599281. doi: 10.3389/fcell.2020.599281.

63. Ferrara N, Adamis AP. Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov 2016;15:385–403. doi: 10.1038/nrd.2015.17.

64. Pompura SL, Dominguez-Villar M. The PI3K/AKT signaling pathway in regulatory T-cell development, stability, and function. J Leukoc Biol 2018;103:1065–76. doi: 10.1002/jlb.2mir0817-349r.

65. Zhang H, Watanabe R, Berry GJ, Tian L, Goronzy JJ, Weyand CM. Inhibition of JAK-STAT signaling suppresses pathogenic immune responses in medium and large vessel vasculitis. Circulation 2018;137:1934–48. doi: 10.1161/circulationaha.117.030423.

66. Sun K, Luo J, Guo J, Yao X, Jing X, Guo F. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: a narrative review. Osteoarthritis Cartilage 2020;28:400–09. doi: 10.1016/j.joca.2020.02.027.

67. Zhu M, Ding Q, Lin Z, et al. New targets and strategies for rheumatoid arthritif: From signal transduction to epigenetic aspect. Biomolecules 2023;13:766. doi: 10.3390/biom13050766.

68. Malemud CJ. The PI3K/Akt/PTEN/mTOR pathway: a fruitful target for inducing cell death in rheumatoid arthritis? Future Med Chem 2015;7:1137–47. doi: 10.4155/fmc.15.55.

69. Li Z, Chen M, Wang Z, et al. Berberine inhibits RA-FLS cell proliferation and adhesion by regulating RAS/MAPK/FOXO/HIF-1 signal pathway in the treatment of rheumatoid arthritis. Bone Joint Res 2023;12:91–102. doi: 10.1302/2046-3758.122.bjr-2022-0269.r1.

70. Zhang X, Guan X, Piao Y, Che X, Si M, Jin J. Baicalein induces apoptosis of rheumatoid arthritis synovial fibroblasts through inactivation of the PI3K/Akt/mTOR pathway. Evid Based Complement Alternat Med 2022;2022:3643265. doi: 10.1155/2022/3643265.

71. Sabir JS, El Omri A, Banaganapalli B, et al. Dissecting the role of NF-κB protein family and its regulators in rheumatoid arthritis using weighted gene co-expression network. Front Genet 2019;10:1163. doi: 10.3389/fgene.2019.01163.

72. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther 2017;2:1–9. doi: 10.1038/sigtrans.2017.23.

73. Liu P, Li Y, Wang W, et al. Role and mechanisms of the NF-ĸB signaling pathway in various developmental processes. Biomed Pharmacother 2022;153:113513. doi: 10.1016/j.biopha.2022.113513.

74. Guo Q, Jin Y, Chen X, et al. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther 2024;9:53. doi: 10.1038/s41392-024-01757-9.

75. Ding Q, Hu W, Wang R, et al. Signaling pathways in rheumatoid arthritis: implications for targeted therapy. Signal Transduct Target Ther 2023;8:68. doi: 10.1038/s41392-023-01331-9.

76. Roberti A, Chaffey LE, Greaves DR. NF-κB signaling and inflammation-drug repurposing to treat inflammatory disorders? Biology (Basel) 2022;11:372. doi: 10.3390/biology11030372.

77. Nejatbakhsh Samimi L, Farhadi E, Tahmasebi MN, Jamshidi A, Sharafat Vaziri A, Mahmoudi M. NF-κB signaling in rheumatoid arthritis with focus on fibroblast-like synoviocytes. Auto Immun Highlights 2020;11:11. doi: 10.1186/s13317-020-00135-z.

78. Sabio G, Davis RJ. TNF and MAP kinase signalling pathways. Semin Immunol 2014;26:237–45. doi: 10.1016/j.smim.2014.02.009.

79. Zhang Q, Liu J, Zhang M, et al. Apoptosis induction of fibroblast-like synoviocytes is an important molecular-mechanism for herbal medicine along with its active components in treating rheumatoid arthritis. Biomolecules 2019;9: 795. doi: 10.3390/biom9120795.

80. Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 2023;8:455. doi: 10.1038/s41392-023-01705-z.

81. Pellarin I, Dall’Acqua A, Favero A, et al. Cyclin-dependent protein kinases and cell cycle regulation in biology and disease. Signal Transduct Target Ther 2025;10:11. doi: 10.1038/s41392-024-02080-z.

82. Andreev D, Kachler K, Schett G, Bozec A. Rheumatoid arthritis and osteoimmunology: The adverse impact of a deregulated immune system on bone metabolism. Bone 2022;162:116468. doi: 10.1016/j.bone.2022.116468.

83. Timofeev O, Giron P, Lawo S, Pichler M, Noeparast M. ERK pathway agonism for cancer therapy: evidence, insights, and a target discovery framework. NPJ Precis Oncol 2024;8:70. doi: 10.1038/s41698-024-00554-5.

84. Sharma AR, Jagga S, Chakraborty C, Lee SS. Fibroblast-like-synoviocytes mediate secretion of pro-inflammatory cytokines via ERK and JNK MAPKs in Ti-particle-induced osteolysis. Materials (Basel) 2020;13:3628. doi: 10.3390/ma13163628.

85. Ge HX, Zou FM, Li Y, Liu AM, Tu M. JNK pathway in osteoarthritis: pathological and therapeutic aspects. J Recept Signal Transduct Res 2017;37:431–36. doi: 10.1080/10799893.2017.1360353.

86. Machado TR, Machado TR, Pascutti PG. The p38 MAPK inhibitors and their role in inflammatory diseases. Chemistry Select 2021;6:5729–42. doi: 10.1002/slct.202100406.

87. Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 2011;75:50–83. doi: 10.1128/mmbr.00031-10.

88. Han J, Wu J, Silke J. An overview of mammalian p38 mitogen-activated protein kinases, central regulators of cell stress and receptor signaling. F1000Res 2020;9: F1000 Faculty Rev-653. doi: 10.1111/febs.13250.

89. Abdallah AM, Naiem AHA, Abdelraheim SR, et al. Pyrazole derivatives ameliorate synovial inflammation in collagen-induced arthritis mice model via targeting p38 MAPK and COX-2. Naunyn Schmiedebergs Arch Pharmacol 2025;398:819–32. doi: 10.1007/s00210-024-03290-6.

90. Schett G, Zwerina J, Firestein G. The p38 mitogen-activated protein kinase (MAPK) pathway in rheumatoid arthritis. Ann Rheum Dis 2008;67:909–16. doi: 10.1136/ard.2007.074278.

91. Olsen JJ, Pohl S, Deshmukh A, et al. The role of Wnt signalling in angiogenesis. Clin Biochem Rev 2017;38:131–42.

92. Hayat R, Manzoor M, Hussain A. Wnt signaling pathway: a comprehensive review. Cell Biol Int 2022;46:863–77. doi: 10.1002/cbin.11797.

93. Chae WJ, Bothwell ALM. Canonical and non-canonical Wnt signaling in immune cells. Trends Immunol 2018;39:830–47. doi: 10.1016/j.it.2018.08.006.

94. Cici D, Corrado A, Rotondo C, Cantatore FP. Wnt signaling and biological therapy in rheumatoid arthritis and spondyloarthritis. Int J Mol Sci 2019;20:5552. doi: 10.3390/ijms20225552.

95. Miao CG, Yang YY, He X, et al. Wnt signaling pathway in rheumatoid arthritis, with special emphasis on the different roles in synovial inflammation and bone remodeling. Cell Signal 2013;25:2069–78. doi: 10.1016/j.cellsig.2013.04.002.

96. Li X, Han Y, Li G, Zhang Y, Wang J, Feng C. Role of Wnt signaling pathway in joint development and cartilage degeneration. Front Cell Dev Biol 2023;11:1181619. doi: 10.3389/fcell.2023.1181619.

97. Jurić I, Kelam N, Racetin A, et al. WNT signaling factors as potential synovial inflammation moderators in patients with hip osteoarthritis. Biomedicines 2025;13:995. doi: 10.3390/biomedicines13040995.

98. Liao B, Guan M, Tan Q, et al. Low-intensity pulsed ultrasound inhibits fibroblast-like synoviocyte proliferation and reduces synovial fibrosis by regulating Wnt/β-catenin signaling. J Orthop Translat 2021;30:41–50. doi: 10.1016/j.jot.2021.08.002.

99. Rodriguez-Trillo A, Mosquera N, Pena C, et al. Non-canonical WNT5A signaling through RYK contributes to aggressive phenotype of the rheumatoid fibroblast-like synoviocytes. Front Immunol 2020;11:555245. doi: 10.3389/fimmu.2020.555245.

100. Guanizo AC, Fernando CD, Garama DJ, Gough DJ. STAT3: a multifaceted oncoprotein. Growth Factors 2018;36:1–14. doi: 10.1080/08977194.2018.1473393.

101. Seif F, Khoshmirsafa M, Aazami H, Mohsenzadegan M, Sedighi G, Bahar M. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun Signal 2017;15:23. doi: 10.1186/s12964-017-0177-y.

102. O'Shea JJ, Plenge R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity 2012;36:542–50. doi: 10.1016/j.immuni.2012.03.014.

103. Malemud CJ. The role of the JAK/STAT signal pathway in rheumatoid arthritis. Ther Adv Musculoskelet Dis 2018;10:117–27. doi: 10.1177/1759720x18776224.

104. Bousoik E, Montazeri Aliabadi H. "Do we know Jack" about JAK? A closer look at JAK/STAT signaling pathway. Front Oncol 2018;8:287. doi: 10.3389/fonc.2018.00287.

105. Fragoulis GE, McInnes IB, Siebert S. JAK-inhibitors. New players in the field of immune-mediated diseases, beyond rheumatoid arthritis. Rheumatology (Oxford) 2019;58:i43–i54. doi: 10.1093/rheumatology/key276.

106. MacFarlane LA, Todd DJ. Kinase inhibitors: the next generation of therapies in the treatment of rheumatoid arthritis. Int J Rheum Dis 2014;17:359–68. doi: 10.1111/1756-185x.12293.

107. Verhoeven Y, Tilborghs S, Jacobs J, et al. The potential and controversy of targeting STAT family members in cancer. Semin Cancer Biol 2020;60:41–56. doi: 10.1016/j.semcancer.2019.10.002.

108. Bluyssen HA, Rastmanesh MM, Tilburgs C, et al. IFN gamma-dependent SOCS3 expression inhibits IL-6-induced STAT3 phosphorylation and differentially affects IL-6 mediated transcriptional responses in endothelial cells. Am J Physiol Cell Physiol 2010;299:C354–62. doi: 10.1152/ajpcell.00513.2009.

109. Aittomäki S, Pesu M. Therapeutic targeting of the Jak/STAT pathway. Basic Clin Pharmacol Toxicol 2014;114:18–23. doi: 10.1111/bcpt.12164.

110. Cheon H, Holvey-Bates EG, Schoggins JW, et al. IFNβ-dependent increases in STAT1, STAT2, and IRF9 mediate resistance to viruses and DNA damage. EMBO J 2013;32:2751–63. doi: 10.1038/emboj.2013.203.

111. Banerjee S, Biehl A, Gadina M, Hasni S, Schwartz DM. JAK-STAT Signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs 2017;77:521–46. doi: 10.1007/s40265-017-0701-9.

112. Duggan S, Keam SJ. Upadacitinib: first approval. Drugs 2019;79:1819–28. doi: 10.1007/s40265-019-01211-z.

113. Romão VC, Fonseca JE. Major challenges in rheumatology: will we ever treat smarter, instead of just harder? Front Med (Lausanne) 2019;6:144. doi: 10.3389/fmed.2019.00144.

114. Taylor PC. Clinical efficacy of launched JAK inhibitors in rheumatoid arthritis. Rheumatology (Oxford) 2019;58:i17–i26. doi: 10.1093/rheumatology/key225.

115. Zhao F, Hu Z, Li G, et al. Angiogenesis in rheumatoid arthritis: pathological characterization, pathogenic mechanisms, and nano-targeted therapeutic strategies. Bioact Mater 2025;50:603–39. doi: 10.1016/j.bioactmat.2025.04.026.

116. Bullock J, Rizvi SAA, Saleh AM, et al. Rheumatoid arthritis: a brief overview of the treatment. Med Princ Pract 2018;27:501–07. doi: 10.1159/000493390.

117. Radu A-F, Bungau SG. Management of rheumatoid arthritis: an overview. Cells 2021;10:2857. doi: 10.3390/cells10112857.

118. Ho KY, Cardosa MS, Chaiamnuay S, et al. Practice advisory on the appropriate use of NSAIDs in primary care. J Pain Res 2020;13:1925–39. doi: 10.2147/jpr.s247781.

119. Crofford LJ. Use of NSAIDs in treating patients with arthritis. Arthritis Res Ther 2013;15 Suppl 3:S2. doi: 10.1186/ar4174.

120. Naeem M, Iqbal T, Nawaz Z, Hussain S. Preparation, optimization and evaluation of transdermal therapeutic system of celecoxib to treat inflammation for treatment of rheumatoid arthritis. An Acad Bras Cienc 2021;93:e20201561. doi: 10.1590/0001-3765202120201561.

121. Solomon DH, Shao M, Wolski K, Nissen S, Husni ME, Paynter N. Derivation and validation of a major toxicity risk score among nonsteroidal antiinflammatory drug users based on data from a randomized controlled trial. Arthritis Rheumatol 2019;71:1225–31. doi: 10.1002/art.40870.

122. Crowson LP, Davis JM, 3rd, Hanson AC, et al. Time trends in glucocorticoid use in rheumatoid arthritis during the biologics era: 1999-2018. Semin Arthritis Rheum 2023;61:152219. doi: 10.1016/j.semarthrit.2023.152219.

123. Rau R. Glucocorticoid treatment in rheumatoid arthritis. Expert Opin Pharmacother 2014;15:1575–83. doi: 10.1517/14656566.2014.922955.

124. Caporali R, Fakhouri WKH, Nicolay C, Longley HJ, Losi S, Rogai V. New rheumatoid arthritis treatments for 'old' patients: results of a systematic review. Adv Ther 2020;37:3676–91. doi: 10.1007/s12325-020-01435-6.

125. Keam SJ. Ozoralizumab: first approval. Drugs 2023;83:87–92. doi: 10.1007/s40265-022-01821-0.

126. Benjamin O, Goyal A, Lappin SL. Disease modifying anti-rheumatic drugs (DMARD). Treasure Island, FL, USA: StatPearls Publishing; 2020.

127. Tanaka Y. Ozoralizumab: first Nanobody® therapeutic for rheumatoid arthritis. Expert Opin Biol Ther 2023;23:579–87. doi: 10.1080/14712598.2023.2231344.

128. Li C, Han Y, Luo X, et al. Immunomodulatory nano-preparations for rheumatoid arthritis. Drug Deliv 2023;30:9–19. doi: 10.1080/10717544.2022.2152136.

129. Ren S, Xu Y, Dong X, et al. Nanotechnology-empowered combination therapy for rheumatoid arthritis: principles, strategies, and challenges. J Nanobiotechnology 2024;22:431. doi: 10.1186/s12951-024-02670-7.

130. Mahajan TD, Mikuls TR. Recent advances in the treatment of rheumatoid arthritis. Curr Opin Rheumatol 2018;30:231–7. doi: 10.1097/BOR.0000000000000496.

131. Chaplin S. Upadacitinib for the treatment of rheumatoid arthritis. Prescriber 2020;31:32–4. doi: 10.1002/psb.1832.

132. Hazlewood GS, Barnabe C, Tomlinson G, Marshall D, Devoe DJ, Bombardier C. Methotrexate monotherapy and methotrexate combination therapy with traditional and biologic disease modifying anti-rheumatic drugs for rheumatoid arthritis: a network meta-analysis. Cochrane Database Syst Rev 2016;2016:Cd010227. doi: 10.1002/14651858.cd010227.pub2.

133. Tsumoto K, Takeuchi T. Next-generation anti-TNFα agents: the example of ozoralizumab. Biodrugs 2024;38:341–51. doi: 10.1007/s40259-024-00648-3.

134. Oyama S, Ebina K, Etani Y, et al. A novel anti-TNF-α drug ozoralizumab rapidly distributes to inflamed joint tissues in a mouse model of collagen induced arthritis. Sci Rep 2022;12:18102. doi: 10.1038/s41598-022-23152-6.

135. Kyuuma M, Kaku A, Mishima-Tsumagari C, et al. Unique structure of ozoralizumab, a trivalent anti-TNFα NANOBODY® compound, offers the potential advantage of mitigating the risk of immune complex-induced inflammation. Front Immunol 2023;14:1149874. doi: 10.3389/fimmu.2023.1149874.

136. Ishiwatari-Ogata C, Kyuuma M, Ogata H, et al. Ozoralizumab, a humanized anti-TNFα NANOBODY® compound, exhibits efficacy not only at the onset of arthritis in a human TNF transgenic mouse but also during secondary failure of administration of an anti-TNFα IgG. Front Immunol 2022;13:853008. doi: 10.3389/fimmu.2022.853008.

137. Fleischmann R, Nayiager S, Louw I, et al. A multiple ascending dose/proof of concept study of ATN-103 (ozoralizumab) in rheumatoid arthritis subjects on a background of methotrexate. Arthritis Rheum 2011;63 (10 Suppl):S1033.

138. Fleischmann RM, De Bruyn S, Duby C, et al., editors. A novel individualized treatment approach in open-label extension study of ozoralizumab (ATN-103) in subjects with rheumatoid arthritis on a background of methotrexate. Arthritis Rheum 2012;64(10 Suppl):S563.

139. Wang P, Li A, Yu L, Chen Y, Xu D. Energy conversion-based nanotherapy for rheumatoid arthritis treatment. Front Bioeng Biotechnol 2020;8:652. doi: 10.3389/fbioe.2020.00652.

140. Selaas O, Nordal HH, Halse AK, Brun JG, Jonsson R, Brokstad KA. Serum markers in rheumatoid arthritis: a longitudinal study of patients undergoing infliximab treatment. Int J Rheumatol 2015;2015:276815. doi: 10.1155/2015/276815.

141. Doyle MK, Rahman MU, Frederick B, et al. Effects of subcutaneous and intravenous golimumab on inflammatory biomarkers in patients with rheumatoid arthritis: results of a phase 1, randomized, open-label trial. Rheumatology (Oxford) 2013;52:1214–9. doi: 10.1093/rheumatology/kes381.

142. Hattori Y, Kojima T, Kaneko A, et al. High rate of improvement in serum matrix metalloproteinase-3 levels at 4 weeks predicts remission at 52 weeks in RA patients treated with adalimumab. Mod Rheumatol 2018;28:119–25. doi: 10.1080/14397595.2017.1317320.

143. Shu Q, Amin MA, Ruth JH, Campbell PL, Koch AE. Suppression of endothelial cell activity by inhibition of TNFα. Arthritis Res Ther 2012;14:R88. doi: 10.1186/ar3812.

144. Végh E, Kerekes G, Pusztai A, et al. Effects of 1-year anti-TNF-α therapy on vascular function in rheumatoid arthritis and ankylosing spondylitis. Rheumatol Int 2020;40:427–36. doi: 10.1007/s00296-019-04497-0.

145. Ruiz-Limón P, Ortega R, Arias de la Rosa I, et al. Tocilizumab improves the proatherothrombotic profile of rheumatoid arthritis patients modulating endothelial dysfunction, NETosis, and inflammation. Transl Res 2017;183:87–103. doi: 10.1016/j.trsl.2016.12.003.

146. Langdon K, Haleagrahara N. Regulatory T-cell dynamics with abatacept treatment in rheumatoid arthritis. Int Rev Immunol 2018;37:206–14. doi: 10.1080/08830185.2018.1465943.

147. Ghannam K, Martinez Gamboa L, Kedor C, et al. Response to abatacept is associated with the inhibition of proteasome β1i expression in T cells of patients with rheumatoid arthritis. RMD Open 2020;6. doi: 10.1136/rmdopen-2020-001248.

148. Hodge JA, Kawabata TT, Krishnaswami S, et al. The mechanism of action of tofacitinib - an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis. Clin Exp Rheumatol 2016;34:318–28.

149. Al-Salama ZT, Scott LJ. Baricitinib: a review in rheumatoid arthritis. Drugs 2018;78:761–72. doi: 10.1007/s40265-018-0908-4.

150. Dhillon S, Keam SJ. Filgotinib: first approval. Drugs 2020;80:1987–97. doi: 10.1007/s40265-020-01439-0.

151. Guo H, Li L, Liu B, et al. Inappropriate treatment response to DMARDs: A pathway to difficult-to-treat rheumatoid arthritis. Int Immunopharmacol 2023;122:110655. doi: 10.1016/j.intimp.2023.110655.

152. Kłak A, Paradowska-Gorycka A, Kwiatkowska B, Raciborski F. Personalized medicine in rheumatology. Reumatologia 2016;54:177–86. doi: 10.5114/reum.2016.62472.

153. Pawar A, Desai RJ, Gautam N, Kim SC. Risk of admission to hospital for serious infection after initiating tofacitinib versus biologic DMARDs in patients with rheumatoid arthritis: a multidatabase cohort study. Lancet Rheumatol 2020;2:e84–e98. doi: 10.1016/s2665-9913(19)30137-7.

154. Favalli EG. Tofacitinib's infectious profile: concerns for clinical practice. Lancet Rheumatol 2020;2:e65–e67. doi: 10.1016/s2665-9913(20)30001-1.

155. Harrington R, Harkins P, Conway R. Janus kinase inhibitors in rheumatoid arthritis: an update on the efficacy and safety of tofacitinib, baricitinib and upadacitinib. J Clin Med 2023;12:6690. doi: 10.3390/jcm12206690.

156. Szekanecz Z, Buch MH, Charles-Schoeman C, et al. Efficacy and safety of JAK inhibitors in rheumatoid arthritis: update for the practising clinician. Nat Rev Rheumatol 2024;20:101–15. doi: 10.1038/s41584-023-01062-9.

157. Rai V, Patel N, Mammen SR, Chaudhary SM, Arshad S, Munazzam SW. Futuristic novel therapeutic approaches in the treatment of rheumatoid arthritis. Cureus 2023;15:e49738. doi: 10.7759/cureus.49738.

158. Koller-Smith L, Mehdi AM, March L, Tooth L, Mishra GD, Thomas R. Rheumatoid arthritis is a preventable disease: 11 ways to reduce your patients' risk. Intern Med J 2022;52:711–16. doi: 10.1111/imj.15537.