Predictors of persistent high disease activity after methotrexate treatment in rheumatoid arthritis patients

Main Article Content

Ayu Paramaiswari
Nyoman Kertia
Deddy Achadiono
Armin Sinarta
Dhite Nugroho

Abstract

Background


Methotrexate (MTX) is the firstline therapy for rheumatoid arthritis (RA). However, 30–40% of RA patients exhibit poor response. Identifying early factors associated with persistent disease activity is critical to guide treatment. This study aimed to identify predictors of persistent high disease activity (DAS28-ESR >3.2) after six months of MTX therapy in RA patients.


Methods


A retrospective cohort study was conducted involving 204 RA patients who had completed six months of MTX therapy. The primary outcome was DAS28-ESR score at six months. Independent variables included baseline erythrocyte sedimentation rate (ESR), cumulative doses of MTX and low-dose methylprednisolone (LDM), and rheumatoid factor (RF) status. Simple and multiple logistic regression was used to analyze the data.


 Results


Significant differences in ESR and cumulative MTX dose were observed between low and high disease activity groups. Multivariate analysis identified four independent predictors of persistent high disease activity (DAS28-ESR >3.2) after six months of MTX therapy: disease duration >11 months (AOR =0.45; 95% CI 0.23–0.89; p=0.025); age at onset >50 years (AOR 0.48; 95% CI 0.24–0.94; p=0.038); cumulative MTX dose >85 mg (AOR 4.75; 95% CI 1.55–14.64; p=0.006); ESR >66 mm/hr (AOR 2.32; 95% CI 1.11–4.89; p=0.026).


 Conclusion


Greater cumulative methotrexate dose (>85 mg) was the most influential predictor of persistent high disease activity (DAS28-ESR >3.2) after six months of MTX therapy in RA patients. These findings may assist clinicians in identifying patients at risk for poor MTX response and support timely therapeutic adjustments.

Article Details

Section

Original Articles

How to Cite

Predictors of persistent high disease activity after methotrexate treatment in rheumatoid arthritis patients. (2025). Universa Medicina, 44(2), 141-151. https://doi.org/10.18051/UnivMed.2025.v44.141-151

References

1. Smolen JS, Aletaha D, Barton A, et al. Rheumatoid arthritis. Nat Rev Dis Primer 2018;4:18001. doi: 10.1038/nrdp.2018.1.

2. Smolen JS, Breedveld FC, Burmester GR, et al. Treating rheumatoid arthritis to target: 2014 update of the recommendations of an international task force. Ann Rheum Dis 2016;75:3–15. doi: 10.1136/annrheumdis-2015-207524.

3. Smolen JS, Landewé RBM, Bergstra SA, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update. Ann Rheum Dis 2023;82:3–18. doi: 10.1136/ard-2022-223356.

4. Fraenkel L, Bathon JM, England BR, et al. 2021 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Care Res 2021;73:924–39. doi: 10.1002/acr.24596.

5. Roodenrijs NMT, Van Der Goes MC, Welsing PMJ, et al. Is prediction of clinical response to methotrexate in individual rheumatoid arthritis patients possible? A systematic literature review. Joint Bone Spine 2020;87:13–23. doi: 10.1016/j.jbspin.2019.04.002.

6. Duong SQ, Crowson CS, Athreya A, et al. Clinical predictors of response to methotrexate in patients with rheumatoid arthritis: a machine learning approach using clinical trial data. Arthritis Res Ther 2022;24:162. doi: 10.1186/s13075-022-02851-5.

7. Inoue E, Yamanaka H, Hara M, Tomatsu T, Kamatani N. Comparison of disease activity score (DAS)28- erythrocyte sedimentation rate and DAS28- C-reactive protein threshold values. Ann Rheum Dis 2007;66:407–9. doi: 10.1136/ard.2006.054205.

8. Buzatu C, Moots RJ. Measuring disease activity and response to treatment in rheumatoid arthritis. Expert Rev Clin Immunol 2019;15:135–45. doi: 10.1080/1744666X.2019.1559050.

9. Smolen JS, Van Vollenhoven RF, Florentinus S, Chen S, Suboticki JL, A. Kavanaugh. Predictors of disease activity and structural progression after treatment with adalimumab plus methotrexate or continued methotrexate monotherapy in patients with early rheumatoid arthritis and suboptimal response to methotrexate. Ann Rheum Dis 2018;77:1566–72. doi: 10.1136/annrheumdis-2018-213502.

10. Breedveld FC, Weisman MH, Kavanaugh AF, et al. The PREMIER study: a multicenter, randomized, double‐blind clinical trial of combination therapy with adalimumab plus methotrexate versus methotrexate alone or adalimumab alone in patients with early, aggressive rheumatoid arthritis who had not had previous methotrexate treatment. Arthritis Rheum 2006;54:26–37. doi: 10.1002/art.21519.

11. Hidayat R, Fauzia F, Parlindungan F, et al. Predictive factors of methotrexate monotherapy success in patients with rheumatoid arthritis in a national referral center: a cohort study. BMC Rheumatol 2024; 8: 42. doi: 10.21203/rs.3.rs-4633356/v1.

12. Pasma A, Schenk CV, Timman R, et al. Non-adherence to disease-modifying antirheumatic drugs is associated with higher disease activity in early arthritis patients in the first year of the disease. Arthritis Res Ther 2015;17:281. doi: 10.1186/s13075-015-0801-4.

13. Gosselt HR, Van Zelst BD, de Rotte MCFJ, Hazes JMW, de Jonge R, Heil SG. Higher baseline global leukocyte DNA methylation is associated with MTX non-response in early RA patients. Arthritis Res Ther 2019;21:157. doi: 10.1186/s13075-019-1936-5.

14. Sergeant JC, Hyrich KL, Anderson J, et al. Prediction of primary non-response to methotrexate therapy using demographic, clinical and psychosocial variables: results from the UK Rheumatoid Arthritis Medication Study (RAMS). Arthritis Res Ther 2018;20:147. doi: 10.1186/s13075-018-1645-5.

15. Duquesne J, Bouget V, Cournède PH, et al. Machine learning identifies a profile of inadequate responder to methotrexate in rheumatoid arthritis. Rheumatology 2023;62:2402–9. doi: 10.1093/rheumatology/keac645.

16. Gullick NJ, Mian AN, Ibrahim F, et al. Predicting responses in patients with rheumatoid arthritis to disease-modifying agents using baseline clinical data. Clin Exp Rheumatol 2017;35:810–5.

17. Fransen J, van Riel PLCM. The disease activity score and the EULAR response criteria. Clin Exp Rheumatol 2005;23(5 Suppl 39):S93-9.

18. Nielung L, Christensen R, Danneskiold-Samsøe B, et al. Validity and agreement between the 28-joint disease activity score based on C-reactive protein and erythrocyte sedimentation rate in patients with rheumatoid arthritis. Arthritis 2015;2015:401690. doi: 10.1155/2015/401690.

19. Di Matteo A, Bathon JM, Emery P. Rheumatoid arthritis. Lancet 2023;402:2019–33. doi: 10.1016/S0140-6736(23)01525-8.

20. Vázquez-Del Mercado M, Gomez-Bañuelos E, Chavarria-Avila E, et al. Disease duration of rheumatoid arthritis is a predictor of vascular stiffness: a cross-sectional study in patients without known cardiovascular comorbidities: a STROBE-compliant article. Medicine (Baltimore) 2017;96:e7862. doi: 10.1097/MD.0000000000007862.

21. Myasoedova E, Davis J, Matteson EL, Crowson CS. Is the epidemiology of rheumatoid arthritis changing? Results from a population-based incidence study, 1985-2014. Ann Rheum Dis 2020;79:440–4. doi: 10.1136/annrheumdis-2019-216694.

22. Van Der Woude D, Van Der Helm-van Mil AHM. Update on the epidemiology, risk factors, and disease outcomes of rheumatoid arthritis. Best Pract Res Clin Rheumatol 2018;32:174–87. doi: 10.1016/j.berh.2018.10.005.

23. Park DJ, Jeong H, Choi SE, Kang JH, Lee SS. Impact of obesity on clinical outcomes and treatment continuation in rheumatoid arthritis patients receiving non-TNF-targeted therapies. Ther Adv Musculoskelet Dis 2024;16:1759720X241308027. doi: 10.1177/1759720X241308027.

24. Cioffi G, Giollo A, Orsolini G, et al. Disease activity and anticitrullinated peptide antibody positivity predict the worsening of ventricular function in rheumatoid arthritis. ACR Open Rheumatol 2020;2:232–41. doi: 10.1002/acr2.11119.

25. Saramet EE, Pomȋrleanu C, Maştaleru A, et al. Autonomic dysfunction and cardiovascular risk in patients with rheumatoid arthritis: can heart rate variability analysis contribute to a better evaluation of the cardiovascular profile of a patient? J Clin Med 2023;12:7736. doi: 10.3390/jcm12247736.

26. Pandey PK, Swamy A, Biswas TK, Thakuria R. Prevalence of metabolic syndrome in treatment naïve rheumatoid arthritis and correlation with disease parameters. Arch Rheumatol 2017;32:46–52. doi: 10.5606/ArchRheumatol.2017.5949.

27. Gomides APM, de Albuquerque CP, Santos AVB, et al. Rheumatoid artrhitis treatment in Brazil: data from a large real-life multicenter study. Adv Rheumatol Lond Engl 2020;60:16. doi: 10.1186/s42358-020-0119-z.

28. Ciofoaia EI, Pillarisetty A, Constantinescu F. Health disparities in rheumatoid arthritis. Ther Adv Musculoskelet Dis 2022;14:1759720X221137127. doi: 10.1177/1759720X221137127.

29. Skuqi E, Kola ShMS, Kola I. Rheumatoid arthritis and pain management: literature review. Interdiscip J Res Dev 2022;9:31. doi: 10.56345/ijrdv9n4s204.

30. Zhdan V, Tkachenko M, Babanina M, Kitura Y, Kyrian O. The most common causes of comorbidity in patients with rheumatoid arthritis. Fam Med 2021;4:79–83. doi: 10.30841/2307-5112.4.2021.249428.

31. Jabbar MAH, Hussein ZK. Estimation of leptin and estrogen hormones in obese women with arthritis. Egypt J Hosp Med 2023;90:2709–15. doi: 10.21608/ejhm.2023.286433.

32. Abuhelwa AY, Hopkins AM, Sorich MJ, Proudman S, Foster DJR, Wiese MD. Association between obesity and remission in rheumatoid arthritis patients treated with disease-modifying anti-rheumatic drugs. Sci Rep 2020;10:18634. doi: 10.1038/s41598-020-75673-7.

33. Ota R, Hata T, Hirata A, et al. Risk of infection from glucocorticoid and methotrexate interaction in patients with rheumatoid arthritis using biologics: A retrospective cohort study. Br J Clin Pharmacol 2023;89:2168–78. doi: 10.1111/bcp.15687.

34. Takahashi C, Kaneko Y, Okano Y, et al. Association of erythrocyte methotrexate-polyglutamate levels with the efficacy and hepatotoxicity of methotrexate in patients with rheumatoid arthritis: a 76-week prospective study. RMD Open 2017;3:e000363. doi: 10.1136/rmdopen-2016-000363.

35. Gehringer CK, Martin GP, Hyrich KL, et al. Developing and externally validating multinomial prediction models for methotrexate treatment outcomes in patients with rheumatoid arthritis: results from an international collaboration. J Clin Epidemiol 2024;166:111239. doi: 10.1016/j.jclinepi.2023.111239.