Diabetic retinopathy: pathogenesis, pathophysiology, and treatment

Main Article Content

Yudistira Yudistira
Kevin Anggakusuma Hendrawan
Ari Andayani
Ni Made Ari Suryathi

Abstract

Diabetic retinopathy (DR) is the most common microvascular complication of diabetes mellitus (DM) and one of the leading causes of vision impairment worldwide. Prolonged hyperglycemia initiates a cascade of molecular events including chronic inflammation, oxidative stress, advanced glycation end products, and the activation of plasma kallikrein and protein kinase C signaling pathways, which leads to endothelial damage and pericyte loss. The resulting endothelial barrier dysfunction promotes serum leakage and retinal edema, while advanced disease stages are characterized by ischemia-driven retinal neovascularization mediated by elevated intraocular vascular endothelial growth factor (VEGF) levels. Current therapeutic strategies for diabetic retinopathy include laser therapy, intravitreal administration of anti-VEGF agents or corticosteroids, and vitreoretinal surgery. Despite their efficacy, a number of patients experience suboptimal responses. Consequently, novel therapeutic approaches are under investigation, including alternative anti-angiogenic agents, gene therapies, and visual cycle modulators currently undergoing clinical trials. A comprehensive understanding of the pathogenesis and pathophysiology of diabetic retinopathy is essential to improve existing treatment modalities and address current limitations in patient outcomes. In this review, we systematically searched and analyzed articles published in English from 2014 to 2024 using PubMed, ScienceDirect, SpringerLink, and Google Scholar. Relevant search terms included “diabetic retinopathy,” “pathophysiology,” “pathogenesis,” “treatment,” and “diabetic macular edema.” This review presents recent insights into the pathogenesis of diabetic retinopathy, including oxidative stress, inflammation, and neurodegeneration, followed by an overview of its pathophysiology such as microvascular dysfunction and neovascularization. Finally, current and emerging treatment modalities, encompassing both pharmacological and surgical approaches, are discussed. This structured approach provides essential background to understand the complexity of diabetic retinopathy and recent advances in its management.

Article Details

Section

Review Article

How to Cite

Diabetic retinopathy: pathogenesis, pathophysiology, and treatment. (2025). Universa Medicina, 44(2), 270-284. https://doi.org/10.18051/UnivMed.2025.v44.270-284

References

1. Sasongko MB, Widyaputri F, Agni AN, et al. Prevalence of diabetic retinopathy and blindness in Indonesian adults with type 2 diabetes. Am J Ophthalmol 2017;181:79–87. doi: 10.1016/j.ajo.2017.06.019.

2. Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis. Ophthalmology 2021;128:1580–91. doi: 10.1016/j.ophtha.2021.04.027.

3. Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 2019;157: 107843. doi: 10.1016/j.diabres.2019.107843

4. Kementerian Kesehatan R.I. Badan Kebijakan Pembangunan. Survei kesehatan Indonesia. Jakarta : Badan Kebijakan Pembangunan; 2023.

5. American Academy of Ophthalmology McCannel CA. 2023-2024 Basic and clinical science course(tm), Section 12: retina and vitreous Volume 12 of 2023-2024 BCSC. Kim SJ, Fawzi A, Kovach JL, Patel S, Recchia FM, Sobrin L. editors. American Academy of Ophthalmology;2023.

6. Kang Q, Yang C. Oxidative stress and diabetic retinopathy: molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol 2020;37:101799. doi: 10.1016/j.redox.2020.101799.

7. Thakur S, Gupta SK, Ali V, Singh P, Verma M. Aldose reductase: a cause and a potential target for the treatment of diabetic complications. Arch Pharm Res 2021 ;44:655-67. doi: 10.1007/s12272-021-01343-5.

8. Portillo JAC, Pfaff A, Vos S, Weng M, Nagaraj RH, Subauste CS. Advanced glycation end products upregulate CD40 in human retinal endothelial and Müller cells: relevance to diabetic retinopathy. Cells 2024;13:429. doi: 10.3390/cells13050429.

9. Dănilă AI, Ghenciu LA, Stoicescu ER, et al. Aldose reductase as a key target in the prevention and treatment of diabetic retinopathy: a comprehensive review. Biomedicines 2024;12:747. doi: 10.3390/biomedicines12040747.

10. Oshitari T. Advanced glycation end-products and diabetic neuropathy of the retina. Int J Mol Sci 2023;24:2927. doi: 10.3390/ijms24032927.

11. Ying L, Shen Y, Zhang Y, et al. Association of advanced glycation end products with diabetic retinopathy in type 2 diabetes mellitus. Diabetes Res Clin Pract 2021 ;177:108880. doi: 10.1016/j.diabres.2021.108880.

12. Kowluru RA. Diabetic retinopathy and NADPH oxidase-2: a sweet slippery road. Antioxidants (Basel) 2021;10:783. doi: 10.3390/antiox10050783.

13. Tonade D, Kern TS. Photoreceptor cells and RPE contribute to the development of diabetic retinopathy. Prog Retin Eye Res 2021;83:100919. doi: 10.1016/j.preteyeres.2020.100919.

14. Majidi SP, Rajagopal R. Photoreceptor responses to light in the pathogenesis of diabetic retinopathy. Vis Neurosci 2020;37:E007. doi: 10.1017/S0952523820000061.

15. Wilkinson CP, Hinton DR, Sadda SR, Wiedemann P. Ryan’s Retina. 6th ed. Schachat AP, editor in-chief. New York: Elsevier; 2017.

16. Hussain A, Ashique S, Afzal O, et al. A correlation between oxidative stress and diabetic retinopathy: an updated review. Exp Eye Res 2023;236:109650. doi: 10.1016/j.exer.2023.109650.

17. Kowluru RA. Cross talks between oxidative stress, inflammation and epigenetics in diabetic retinopathy. Cells 2023; 12:300. doi: 10.3390/cells12020300.

18. Pan D, Xu L, Guo M. The role of protein kinase C in diabetic microvascular complications. Front Endocrinol (Lausanne) 2022;13:973058. doi: 10.3389/fendo.2022.973058.

19. Wang W, Lo ACY. Diabetic retinopathy: pathophysiology and treatments. Int J Mol Sci 2018;19:1816. doi: 10.3390/ijms19061816.

20. Suryathi NMA, Dewi IGAM, Andayan A, Rahayu NMK, Pantjawati NLD, Surasmiati NMA. Biomarkers of diabetic retinopathy. Indones J Biomed Sci 2021;15:229–36. doi: 10.15562/ijbs.v15i2.346 .

21. Suryathi NMA, Suastika K, Andayani A, Pantjawati NLD, Surasmiati NMA, Manuaba IBP. High vitreous TNF-alpha and vascular endothelial growth factor levels as risk factor for proliferative diabetic retinopathy in type 2 diabetes mellitus patients. Bali Med J 2024;13:1307–11. doi: 10.15562/bmj.v13i3.5298.

22. Tang L, Xu GT, Zhang JF. Inflammation in diabetic retinopathy: possible roles in pathogenesis and potential implications for therapy. Neural Regen Res 2023 ;18:976-82. doi: 10.4103/1673-5374.355743.

23. Wei L, Sun X, Fan C, Li R, Zhou S, Yu H. The pathophysiological mechanisms underlying diabetic retinopathy. Front Cell Dev Biol 2022;10:963615. doi: 10.3389/fcell.2022.963615.

24. Sheemar A, Soni D, Takkar B, Basu S, Venkatesh P. Inflammatory mediators in diabetic retinopathy: deriving clinicopathological correlations for potential targeted therapy. Indian J Ophthalmol 2021;69:3035-49. doi:10.4103/ijo.IJO_1326_21.

25. Antonetti DA, Silva PS, Stitt AW. Current understanding of the molecular and cellular pathology of diabetic retinopathy. Nat Rev Endocrinol 2021;17:195-206. doi: 10.1038/s41574-020-00451-4.

26. Gu C, Lhamo T, Zou C, et al. Comprehensive analysis of angiogenesis-related genes and pathways in early diabetic retinopathy. BMC Med Genomics. 2020;13:142. doi:10.1186/s12920-020-00799-6.

27. Rezzola S, Loda A, Corsini M, et al. Angiogenesis-inflammation cross talk in diabetic retinopathy: novel insights from the chick embryo chorioallantoic membrane/human vitreous platform. Front Immunol 2020;11:581288. doi: 10.3389/fimmu.2020.581288.

28. Ansari P, Tabasumma N, Snigdha NN, et al. Diabetic retinopathy: an overview on mechanisms, pathophysiology and pharmacotherapy. Diabetology 2022; 3:159-75. doi:10.3390/diabetology3010011.

29. Palomares-Ordóñez JL, Rojas-Juárez S, Sánchez-Ramos JA, et al. Diabetic retinopathy clinical research network: diabetic retinopathy and diabetic macular edema. Rev Mex Oftalmol (Eng) 2019;93:70-82. DOI: 10.24875/RMOE.M19000058.

30. Passos RM, Malerbi FK, Rocha M, Maia M, Farah ME. Real-life outcomes of subthreshold laser therapy for diabetic macular edema. Int J Retina Vitreous 2021 ;7:4. doi:10.1186/s40942-020-00268-3.

31. Mounirou BAM, Adam ND, Yakoura AKH, Aminou MSM, Liu YT, Tan LY. Diabetic retinopathy: an overview of treatments. Indian J Endocrinol Metab 2022;26:111-8. doi:10.4103/ijem.ijem_480_21.

32. Tomita Y, Lee D, Tsubota K, Negishi K, Kurihara T. Updates on the current treatments for diabetic retinopathy and possibility of future oral therapy. J Clin Med 2021;10:4666. doi:10.3390/jcm10204666.

33. Nikkhah H, Ghazi H, Razzaghi MR, Karimi S, Ramezani A, Soheilian M. Extended targeted retinal photocoagulation versus conventional pan-retinal photocoagulation for proliferative diabetic retinopathy in a randomized clinical trial. Int Ophthalmol 2018;38:313-21. doi:10.1007/s10792-017-0469-7.

34. Sajnani R, Oh A, Chen K, Prasad P. Comparison of outcomes and complications between navigated laser (NAVILAS) and pattern scanning laser (PASCAL) systems used in the management of treatment-naive proliferative diabetic retinopathy (PDR). Invest Ophthalmol Vis Sci 2021 ;62:1102.

35. Crosson JN, Mason L, Mason JO. The role of focal laser in the anti–vascular endothelial growth factor era. Ophthalmol Eye Dis 2017;9:1179172117738240. doi:10.1177/1179172117738240.

36. Nozaki M, Ando R, Kimura T, Kato F, Yasukawa T. The role of laser photocoagulation in treating diabetic macular edema in the era of intravitreal drug administration: a descriptive review. Medicina (Kaunas) 2023;59:1319. doi: 10.3390/medicina59071319.

37. Brown DM, Schmidt-Erfurth U, Do D V, et al. Intravitreal aflibercept for diabetic macular edema: 100-week results from the VISTA and VIVID studies. Ophthalmology 2015;122:2044-52. doi:10.1016/j.ophtha.2015.06.017.

38. Korobelnik JF, Do D V, Schmidt-Erfurth U, et al. Intravitreal aflibercept for diabetic macular edema. Ophthalmology 2014;121:2247-54. doi:10.1016/j.ophtha.2014.05.006.

39. Sun JK, Glassman AR, Beaulieu WT, et al. Rationale and application of the Protocol S anti-vascular endothelial growth factor algorithm for proliferative diabetic retinopathy. Ophthalmology 2019;126:87–95. doi: 10.1016/j.ophtha.2018.08.001.

40. Sivaprasad S, Prevost AT, Vasconcelos JC, et al. Clinical efficacy of intravitreal aflibercept versus panretinal photocoagulation for best corrected visual acuity in patients with proliferative diabetic retinopathy at 52 weeks (CLARITY): a multicentre, single-blinded, randomised, controlled, phase 2b, non-inferiority trial. Lancet 2017;389:2193-203. doi:10.1016/S0140-6736(17)31193-5.

41. Wells JA, Glassman AR, Ayala AR, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema: two-year results from a comparative effectiveness randomized clinical trial. Ophthalmology 2016;123:1351-9. doi:10.1016/j.ophtha.2016.02.022.

42. Boyer DS, Yoon YH, Belfort Jr. R, et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology 2014;121:1904–14. doi: 10.1016/j.ophtha.2014.04.024.

43. Salvetat ML, Pellegrini F, Spadea L, et al. The treatment of diabetic retinal edema with intravitreal steroids: how and when. J Clin Med 2024;13:1327. doi: 10.3390/jcm13051327.

44. Campochiaro PA, Khanani A, Singer M, et al. Enhanced benefit in diabetic macular edema from AKB-9778 Tie2 activation combined with vascular endothelial growth factor suppression. Ophthalmology 2016;123:1722-30. doi:10.1016/j.ophtha.2016.04.025.

45. Wykoff CC, Garweg JG, Regillo C, et al. KESTREL and KITE phase 3 studies: 100-week results with brolucizumab in patients with diabetic macular edema. Am J Ophthalmol 2024;260:70-83. doi:10.1016/j.ajo.2023.07.012.

46. Le NT, Kroeger ZA, Lin WV, Khanani AM, Weng CY. Novel treatments for diabetic macular edema and proliferative diabetic retinopathy. Curr Diab Rep 2021 ;21:43. doi: 10.1007/s11892-021-01412-5.

47. Chandrasekaran PR, Madanagopalan VG. KSI-301: antibody biopolymer conjugate in retinal disorders. Ther Adv Ophthalmol 2021;13:25158414211027708. doi:10.1177/25158414211027708.

48. Dhoot DS. Suprachoroidal delivery of RGX-314 for diabetic retinopathy: the phase ii altitudeTM study. Invest Ophthalmol Vis Sci 2022 ;63:1152.

49. Gelfman CM, Grishanin R, Bender KO, et al. Comprehensive preclinical assessment of ADVM-022, an intravitreal anti-VEGF gene therapy for the treatment of neovascular AMD and diabetic macular edema. J Ocul Pharmacol Ther 2021;37:181-90. doi: 10.1089/jop.2021.0001..

50. Wirthlin R, Gill M, Howard D, Menezes A, Rahman S, Latkany P. Port delivery system with ranibizumab (PDS) stabilizes retinal nonperfusion and macular leakage: results from pagoda and pavilion phase 3 trials in diabetic macular edema (DME) and diabetic retinopathy (DR). Invest Ophthalmol Vis Sci 2024;65:6232.

51. Dugel PU, Boyer DS, Antoszyk AN, et al. Phase 1 study of OPT-302 inhibition of vascular endothelial growth factors C and D for neovascular age-related macular degeneration. Ophthalmol Retina 2020;4:250-63. doi:10.1016/j.oret.2019.10.008.

52. Boyer D. Opthea reports positive phase 2a trial results of OPT-302 in diabetic macular edema. The American Society of Retina Specialists (ASRS) Annual Meeting; 2020.

53. Wong TY, Haskova Z, Asik K, et al. Faricimab treat-and-extend for diabetic macular edema: two-year results from the randomized phase 3 Yosemite and Rhine trials. Ophthalmology 2024;131:708-23. doi:10.1016/j.ophtha.2023.12.026.

54. Dugel PU, Khanani AM, Berger BB, et al. Phase 1 dose-escalation study of plasma kallikrein inhibitor THR-149 for the treatment of diabetic macular edema. Transl Vis Sci Technol 2021;10:28. doi:10.1167/tvst.10.14.28.

55. Khanani AM, Patel SS, Gonzalez VH, et al. Phase 1 study of THR-687, a novel, highly potent integrin antagonist for the treatment of diabetic macular edema. Ophthalmol Sci 2021;1:100040. doi:10.1016/j.xops.2021.100040.

56. Kubota R, Jhaveri C, Koester JM, Gregory JK. Effects of emixustat hydrochloride in patients with proliferative diabetic retinopathy: a randomized, placebo-controlled phase 2 study. Graefes Arch Clin Exp Ophthalmol 2021;259:369-78. doi: 10.1007/s00417-020-04899-y.

57. Tatsumi T. Current treatments for diabetic macular edema. Int J Mol Sci 2023 ;24:9591. doi: 10.3390/ijms24119591.

58. Jackson TL, Nicod E, Angelis A, Grimaccia F, Pringle E, Kanavos P. Pars plana vitrectomy for diabetic macular edema: a systematic review, meta-analysis, and synthesis of safety literature. Retina 2017;37:886-95. doi:10.1097/IAE.0000000000001280.

59. Simunovic MP, Hunyor AP, Ho IV. Vitrectomy for diabetic macular edema: a systematic review and meta-analysis. Can J Ophthalmol 2014;49:188-95. doi:10.1016/j.jcjo.2013.11.012.

60. Kumagai K, Hangai M, Ogino N, Larson E. Effect of internal limiting membrane peeling on long-term visual outcomes for diabetic macular edema. Retina 2015 ;35:1422-8. doi: 10.1097/IAE.0000000000000497.

61. Imai H, Tetsumoto A, Yamada H, et al. Long-term effect of cystotomy with or without the fibrinogen clot removal for refractory cystoid macular edema secondary to diabetic retinopathy. Retina 2021;41:844-51. doi:10.1097/IAE.0000000000002921.

62. Vikas SJ, Agarwal D, Seth S, Kumar A, Kumar A. Comparison of anatomical and functional outcomes of vitrectomy with internal limiting membrane peeling in recalcitrant diabetic macular edema with and without traction in Indian patients. Indian J Ophthalmol 2021;69:3297-3301. doi:10.4103/ijo.IJO_1271_21.

63. Hwang S, Kang SW, Kim KT, Noh H, Kim SJ. Three-year outcomes of vitrectomy combined with intraoperative dexamethasone implantation for non-tractional refractory diabetic macular edema. Sci Rep 2021;11:1292. doi:10.1038/s41598-020-80350-w.