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ABSTRACT 
 

Angiogenesis is the formation of new blood vessels from existing vessels. In rheumatoid arthritis (RA), new 

blood vessels maintain a chronic inflammatory state by transporting inflammatory cells to the site of 

inflammation.  Rheumatoid arthritis is a chronic autoimmune disorder that affects approximately 1% of the 

global population, with a higher prevalence in women. It is characterized by synovial inflammation, hyperplasia, 

and angiogenesis, leading to joint destruction. Understanding the pathogenesis of RA, particularly the 

mechanisms driving synovial angiogenesis, is crucial for the development of targeted therapies. Fibroblast-like 

synoviocytes (FLS) and endothelial cells play key roles in RA pathogenesis by secreting pro-inflammatory 

cytokines and growth factors, such as tumor necrosis factor (TNF)-alpha, interleukin (IL)-1β, IL-6, and vascular 

endothelial growth factor (VEGF). These mediators activate multiple signaling pathways, including VEGF, 

nuclear factor kappa light chain enhancer of activated B cells (NF-κB), phosphatidylinositol-3 kinase 

(PI3K)/AKT, mitogen-activated protein kinase (MAPK), wingless-related integration site (Wnt), and the Janus 

kinase (JAK)/ signal transducer and activator of transcription (STAT), which contribute to synovial 

angiogenesis, inflammation, and joint damage. A literature search was conducted on PubMed, ScienceDirect, 

SpringerLink, and Google Scholar databases for sources published in English from 2015 to 2025, using the 

terms “nanotechnology rheumatoid arthritis,” “angiogenesis,” “synovial inflammation,” “pro-inflammatory 

cytokines,” “disease-modifying antirheumatic drugs,” and “signal transduction pathways”. Current treatments 

for RA include nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, and disease-modifying 

antirheumatic drugs (DMARDs) (conventional synthetic, biological, and targeted synthetic). An informative 

overview of anti-angiogenic strategies for treating RA, which may provide new perspectives for developing 

nanoagents, is opening new horizons in the fight against RA. This review covers RA epidemiology, 

pathogenesis, and signal transduction, as well as current therapies and their limitations, highlighting the need 

to develop new treatment strategies that target angiogenesis in RA.  
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INTRODUCTION  

 

Rheumatoid arthritis (RA) is an autoimmune 

disease characterized by chronic joint 

inflammation and deformities.(1) This condition is 

marked by the infiltration of inflammatory cells, 

an increase in synovial tissue, the formation of 

pannus, the breakdown of cartilage, and the 

destruction of bone.(2) This systemic autoimmune 

disease affects multiple synovial joints, with 

persistent inflammation leading to joint 

destruction.(3) Although the disease itself is 

nonfatal, its complications usually result in 

disabilities, thus reducing the quality of life of 

affected individuals.(4) Rheumatoid arthritis 

affects 1% of the global population(5) and all 

ethnicities.(5) The disease develops in adults and 

predominantly affects women.(1,6) Like other 

chronic diseases, this disease burdens patients and 

caregivers economically and debilitates work 

productivity, particularly in industrialized 

countries.(7) For the most part, there are scarce 

data on this lifelong disease in developing 

countries, including Malaysia, unlike in Western 

countries. 

Angiogenesis, the process of new vessel 

formation, is a key event in the pathogenesis of 

RA.(8) Disruption of angiogenesis plays a crucial 

role in the initial development of human RA, 

which perpetuates chronic inflammation and 

sustains pannus growth, resulting in joint 

damage.(9)  Recently, it has been discovered that 

inhibiting synovial angiogenesis has become 

clinically important to prevent the disease at the 

initial developmental stage.(8,10) Although 

managing RA has become more challenging 

owing to the interplay between RA, aging, and 

comorbidities,(11) the major drawback of treating 

this disease is the limitation of available 

treatments. The use of mainstream therapies such 

as nonsteroidal anti-inflammatory drugs 

(NSAIDs) and conventional disease-modifying 

antirheumatic drugs (DMARDs) aids in impeding 

disease progression, but not in treating the 

disease.(12) Although the introduction of biologic 

DMARDs to clinically target angiogenesis has 

significantly improved RA outcomes,(13) 

treatment response failure is anticipated in some 

patients.(14) Some biologics, NSAIDs, and 

conventional DMARDs have also been reported 

to have contraindications and toxicities.(15)  

Unfortunately, access to current biologics, 

particularly among Asian countries, is scarce 

owing.(7)  

No comprehensive reviews have yet 

examined the progress and fundamental 

mechanisms of anti-angiogenic nanoagents 

specifically in RA. Therefore, this review aims to 

provide a comprehensive review of the 

pathological mechanisms of angiogenesis in RA, 

along with the application of anti-angiogenic 

nanoagents for RA treatment. 

 

METHODS  

 

This review paper involved a thorough 

literature search on PubMed, ScienceDirect, 

SpringerLink, and Google Scholar databases to 

gather relevant English articles published from 

2015 to 2025 using the keywords 

“nanotechnology rheumatoid arthritis,” 

“angiogenesis,” “synovial inflammation,” “pro-

inflammatory cytokines,” “disease-modifying 

antirheumatic drugs,” and “signal transduction 

pathways”. Initially, 2,500 articles met the 

inclusion criteria, but ultimately, 2,342 were 

excluded due to duplication, access issues, and 

irrelevant topics, leaving 158 articles for analysis 

and synthesis (shown in Figure 1). This review 

included peer-reviewed original research, 

systematic reviews, meta-analyses, selected 

narrative reviews, and clinical overviews to 

comprehensively cover mechanistic and 

therapeutic aspects of RA, including 

angiogenesis, signal transduction pathways, and 

treatment strategies. Non-English articles and 

case reports were excluded.  

 

Epidemiology of RA  

Rheumatoid arthritis is a debilitating disease 

affecting approximately 1% of the global 

population.(5) This disease develops in adulthood 

and is usually observed in young women aged 25-

45.(6) In addition, juvenile idiopathic arthritis 

forms of childhood arthritis (replacing the older 

term juvenile rheumatoid arthritis), are observed 

in individuals younger than 16 years at the time of 

onset, with an estimated occurrence rate of 

approximately 2–20 cases per 100,000 

children.(16) Rheumatoid arthritis affects people of 

all ethnicities worldwide.(1,5) According to the 

Rheumatoid Arthritis: Epidemiology Forecast to 

2027 report in 2019, by 2027, the global trends of 

RA in eight key markets, including the United 

States, France, Germany, Italy, Spain, the United 

Kingdom, Japan, and Australia, are projected to 

grow at an annual growth rate (AGR) of 1.09%. 

Ireland has the highest age-standardized incidence 
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of RA (ASR), followed by Finland and 

Kazakhstan.(17)  In Malaysia, demographic data 

have shown that the disease affects major ethnic 

groups, including  Malays (43.3%),  Indians 

(35.4%), and Chinese (20.1%).(18) The Malaysian 

National Inflammatory Arthritis Registry reports 

that the occurrence of RA is roughly twice as high 

in females, with approximately 70% of RA 

patients being women.(19) However, the exact 

statistics for RA incidence could have been 

underestimated owing to the lack of public 

awareness and limited access to rheumatology 

care in Malaysia.(20) Although the exact figures 

remain unknown, the incidence of RA has 

increased over the past few years. 

 

Pathogenesis of RA  

A healthy joint is lined with synovial tissue 

called the synovium. The synovium comprises a 

thin intimal lining and a subintimal lining of two 

to three layers of cells.(21) Synovial tissue contains 

mainly fibroblast-like synoviocytes (FLS) and 

macrophages,(22) the former of which are key 

effector cells of RA.(23) In the inflamed synovium, 

the healthy layer structure expands (hyperplasia) 

and transforms into a pannus-like structure, 

primarily by the over-proliferation of FLS and 

accumulation of macrophages. The pannus 

extends into the joint space, invading and 

degrading the cartilage matrix, thereby promoting 

joint destruction.(22)  The pathophysiology of RA 

synovium is shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Schematic process for conducting a literature search 
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Figure 2. Illustration of (a) healthy synovium and (b) arthritic synovium. In the healthy joint, a thin cell layer of 

fibroblast-like synoviocytes (FLS) and macrophage-like synoviocytes (MLS) form a protective barrier, with 

sublining layers containing fibroblasts, macrophages, and blood vessels. In rheumatoid arthritis, the macrophage 

barrier is lost, the synovial lining expands abnormally (hyperplasia), and the sublining becomes infiltrated with 

immune cells and new blood vessels (neovascularization). Reproduced from Wang et al.(24) under the terms and 

conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/) 

 

 

Synovial tissue inflammation (synovitis) 

begins with immune cell activation (T and B cells) 

and leukocyte recruitment within the tissue 

sublining.(25) Proinflammatory cytokines, 

including tumor necrosis factor-alpha (TNF-α) 

and interleukin-1β (IL-1β), are released into 

surrounding tissues by activated T and B cells. 

FLS and macrophages are stimulated by the 

release of cytokines within the tissue lining, 

resulting in the production of growth factors, 

including vascular endothelial growth factor 

(VEGF) and fibroblast growth factor (FGF), as 

well as other proinflammatory mediators (e.g., IL-

1, IL-6, and IL-17).(22,26) The sustained release of 

inflammatory molecules and growth factors 

within synovial tissue perpetuates synovitis, 

resulting in hyperplasia.(22,25,27) 

The hyperplastic synovium creates reduced 

oxygen tension (hypoxia) within the inflamed 

tissues, triggering synovial angiogenesis.(28) 

Angiogenesis, the outgrowth of new microvessels 

from pre-existing ones, constitutes the initial 

phase of RA pathogenesis.(29) Synovial 

angiogenesis occurs in response to hypoxia-

inducible factor (HIF)-1 molecule expressed 

within the hypoxic synovium. The increase in 

HIF-1 expression primarily activates the VEGF 

signaling pathway, which triggers other pro-

angiogenic cascades within effector cells.(28, 30) 

Other proangiogenic mediators, as summarized in 

Table 1, are among the important players in 

orchestrating RA angiogenesis.(31,32) 

http://creativecommons.org/licenses/by/4.0/
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Table 1. Angiogenic elements and mediators in RA 

Angiogenic elements Mediators Role in RA References 

Growth factor/receptors VEGF, FGF, PDGF, 

EGF, TGF-β, HGF 

VEGFR-2, Ang-1 & 2, 

Tie2 receptor 

Angiogenesis activation via 

direct effects on EC in synovial 

tissue 

Caliogna L et 

al.(33) Zhu et 

al.(34)  

Cytokines TNF-α, IL-1, IL-6, IL-8, 

IL-15, IL-17, IL-18, G-

CSF, GM-CSF, 

oncostatin M 

Enhancing secretion of VEGF by 

EC and FLS for angiogenesis 

activation; 

T and B cell differentiation 

during synovitis 

Tao et al.(35) 

Narazaki et 

al.(36) 

 

Chemokines/Receptors CXCL1, CXCL4, 

CXCL5, CXCL6, and 

CXCL8 

CXCR2, CXCR4, 

CXCR5 

Leukocyte recruitment into the 

inflamed synovium 

Elemam et 

al.,(37) Yeo et 

al.(38) 

 

Hypoxia HIF-1α HIF-1α regulates HIF gene 

transcription in EC for hypoxia-

driven angiogenesis in the 

inflamed synovium 

Li et al.(39) 

Jusman et 

al.(40) 

 

Matrix metalloproteinases MMP-2, MMP-9 Proteolytic degradation of 

extracellular matrix 

Bian et al.(41) 

 

Cell adhesion molecules Integrin, E-selectin, 

VCAM-1, ICAM-2, 

PECAM-1 

Allow EC migration Khodadust et 

al.(42) Mangoni 

& Zinellu (43) 

Others COX/Prostaglandin E2 COX regulates angiogenesis in 

RA 

Woods et 

al.(44) 

Under aberrant signaling of proangiogenic 

mediators and their downstream effectors, the 

synovial endothelium undergoes active cell 

proliferation, migration, and differentiation, 

forming immature microvessels within the 

inflamed synovium.(9,28) These microvessels 

nourish inflammatory cells within the synovium 

and allow their infiltration, leading to pannus 

formation.(45) Pannus is an invasive, highly 

vascularized structure capable of invading and 

destroying the cartilage matrix and bone 

structure.(46) Ideally, these coordinated synovial 

angiogenesis and joint destruction processes 

should be therapeutically targetable.(47) The 

mechanisms underlying synovial angiogenesis in 

RA are shown in Figure 3. 

 

Fibroblast-like synoviocytes: key effector cells 

in RA  

 Fibroblast-like synoviocytes (FLS) are the 

predominant cell type in the normal 

synovium.(22,23) As effector cells of RA, FLS 

initiate and perpetuate RA by secreting 

proinflammatory cytokines and growth factors, 

namely TNF-α, IL-1β, IL-6, and VEGF.(49) 

Cumulative studies have demonstrated that 

abnormal FLS undergo morphological and 

behavioral alterations, such as hyperproliferation, 

invasiveness, and apoptotic resistance.(23,50) 

Aggressive FLS induce numerous adhesion 

molecules (e.g., integrins), thus increasing their 

attachment strength that permeates and plagues 

the articular cartilage.(51) These FLS also produce 

matrix-degrading enzymes such as matrix 

metalloproteinases (MMPs), including MMP-2, 

MMP-3, and MMP-9, which degrade cartilage 

matrix.(52) In addition, FLS together with other 

cytokines, promote the activation of receptor 

activator of nuclear factor (NF) ligand (RANKL) 

expressed in osteoclasts, resulting in erosion of  

the bone.(53) Aggressive FLS activity is controlled 

by several interrelated pathways and signaling 

molecules, as reviewed in a later section. The 

mechanisms and consequences of FLS activation 

in RA are shown in Figure 4. 

In this concept, the loss of proteoglycans 

from the articular cartilage represents a key initial 

step. In the context of an as-yet poorly understood 

immunological sensitization, it directly triggers 

the activation, increased adhesion, and 

invasiveness of RA, which ultimately results in 

tumor-like transformation involving  profound 

epigenetic changes that result in alterations in cell 

growth, apoptosis, migration, and invasion. These 



Angiogenesis in rheumatoid arthritis 

 

 

alterations trigger the homing and survival of 

immune cells and contribute to increased 

osteoclastogenesis and angiogenesis as part of the 

complex pathogenesis of RA. 

 

Angiogenic roles of endothelial cells in RA  

 In RA, endothelial cells (ECs) lining the 

blood vessels are an active target for angiogenic 

activity succeeding angiogenesis.(9) The release of 

cytokines and the presence of hypoxia firmly 

regulate EC responses within tissues. The VEGF 

proteins are the principal activators of EC 

proliferation, survival, differentiation, and 

permeability.(55) Upon stimulation by VEGF, 

resident ECs are loosened at their junctions, 

causing vasodilation and promoting 

hyperpermeability of vessels. Accordingly, 

plasma proteins leak from the bloodstream and 

disrupt the extracellular matrix scaffold. 

Activated ECs also produce matrix-degrading 

enzymes (e.g. MMPs) that dismantle the basement 

membrane and extracellular matrix.   

During proliferation, the endothelial cells 

migrate distally and directly towards stimuli (e.g., 

VEGF released by FLS within the synovium) to 

sustain their continuity from the existing vessels. 

Sprouting ECs form tubules, which are then 

stabilized by mural cells (e.g., pericytes and 

smooth muscle cells) to provide structural support 

before blood flow.(56) Generally, ECs in RA 

undergo enhanced proliferation, leading to an 

increased microvessel density in the inflamed 

synovium.(9) Ultrasound assessment of synovial 

tissue also showed an increase in synovial 

vascularity during the initial stages in patients 

with RA, which correlated with increased 

expression of angiogenic factors such as VEGF-

A, Ang-2, and Tie2.(57)  

 

 

 
 
Figure 3. Mechanisms underlying synovial angiogenesis in rheumatoid arthritis. Synovial inflammation begins 

with the activation of immune cells (T and B cells) that secrete pro-inflammatory cytokines (e.g., TNF-α and 

interleukins) within the synovial lining, stimulating fibroblast-like synoviocytes (FLS) and macrophages. 

Activated FLS secrete growth factors (e.g., VEGF), promoting endothelial activation and driving synovial 

angiogenesis during inflammation, which together with synoviocyte hyperplasia contributes to cartilage damage 

and bone erosion. Reproduced from Gao et al.(48) under the terms and conditions of the Creative Commons 

Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/) 
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Figure 4. Mechanisms and consequences of FLS activation in RA. FLS are involved in many pathological 

aspects of RA by promoting synovitis, pannus growth, and cartilage/bone destruction. Reproduced from Tu et 

al.(54) under the terms and conditions of the Creative Commons Attribution (CC BY) license 

(http://creativecommons.org/licenses/by/4.0/) 

 
 

Signal transduction in RA  

Recent studies dissecting signal transduction 

mechanisms have enhanced our understanding of 

RA pathogenesis and its potential therapeutic 

targets. 

 

Vascular endothelial growth factor (VEGF) 

axis 

Vascular endothelial growth factor (VEGF), 

a growth factor that primarily targets ECs, is well 

recognized for its role in angiogenesis in RA.(58) 

The VEGF family consists of five members: 

VEGF-A, VEGF-B, VEGF-C, VEGF-D, and 

placental growth factor (PLGF). These VEGF 

ligands activate intracellular signaling pathways 

by binding to VEGF receptors on the cell surface. 

Vascular endothelial growth factor  receptors are 

tyrosine kinase receptors (RTKs) with three 

isoforms: VEGFR-1, VEGFR-2, and VEGFR-

3.(59) Their binding interactions are influenced by 

proinflammatory cytokines and hypoxia.(60) The 

binding of VEGF ligands to different VEGF 

receptors has various functions. For instance, 

VEGF-A, VEGF-B, and PLGF bind to VEGFR-1 

to stimulate monocyte migration and have a 

proper vasculature organization. Whereas VEGF-

C and VEGF-D binding to VEGFR-3 primarily 

regulates lymphangiogenesis. VEGF-A signaling 

via VEGFR-2 is essential for the pleiotropic 

characteristics of ECs during angiogenesis.(61) 

VEGF-A is activated by hypoxia-inducible factor 

(HIF)-1α gene transcription during synovial 

hypoxia in RA.(28) Upon binding of VEGF-A to 

VEGFR-2, the receptor undergoes 

autophosphorylation of tyrosine residues, 

including Y951, Y1175, and Y1214. The 

phosphorylated tyrosine residues bind and 

activate intermediate proteins to induce numerous 

cellular responses.(62) For example, the 

phosphorylated Y951 (pY951) recruits T-cell-

specific adapter protein (Tsad) to activate Src; this 

process then activates molecules linked to cell 

adhesion, vascular permeability, and cell survival 

by engaging the PI3K/AKT pathway. 

Phosphorylated Y1175 (pY1175) recruits Src 

Homology-2 domain-containing protein B (SHB), 

which subsequently triggers the activation of focal 

adhesion kinase (FAK), facilitating cell 

attachment and migration. Furthermore, pY1175 

activates Ca2+ dependent pathways by engaging 

PLCγ1, which subsequently governs the 

transcriptional processes involved in cell 

proliferation and migration.(61) The dominance of 

VEGF-A in regulating angiogenesis in RA, as 

shown in Figure 5, makes it the most critical 

therapeutic target.(63) 
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Figure 5. The pathways for VEGFR-2 signal transduction and trafficking are facilitated by VEGF-A (depicted 

in gray). The dashed lines indicate signaling pathways that include additional components such as other adaptor 

proteins or indirect signaling routes, which are omitted for brevity. In contrast, the solid lines denote direct 

signaling pathways. The blue arrows illustrate the paths through which receptors are trafficked for recycling and 

degradation. Adapted from Peach et al.(61) under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/) 

 

 

The diagram shows how signaling pathways 

function when adaptor proteins are attached to key 

tyrosine phosphorylation sites. When Y951 is 

phosphorylated, it attracts TSAd, which binds to 

and activates Src. Src affects the molecules 

involved in cell adhesion, blood vessel 

permeability, and cell survival via the PI3K/AKT 

pathway. The pY1175 site attracts SHB, which 

activates FAK, and is important for cell 

attachment and movement. SHB also activated 

PI3K/AKT. Additionally, pY1175 attracts PLC, 

which initiates Ca2+-dependent signaling, leading 

to the control of cell growth and movement. Cell 

movement is also controlled by binding of NCK 

to pY1214, which activates p38MAPK. When 

VEGFR-2 is activated, it promotes its 

internalization, and signaling continues inside the 

endosomes. After entering RAB5+ sorting 

endosomes, VEGFR-2 can return to the cell 

surface through RAB4+ endosomes for fast 

signaling or Rab11+ endosomes for slow 

signaling limited by PTP1b. Alternatively, 

VEGFR-2 may have undergone lysosomal 

degradation in Rab7+ endosomes. 

The phosphatidylinositol 3-kinase (PI3K)/ 

protein kinase (AKT) signaling pathway 

The PI3K/AKT pathway, downstream of 

VEGF-A and VEGFR-2 signal transduction, is a 

critical regulator of cell proliferation, survival, 

metabolism, and angiogenesis.(64) Direct binding 

of PI3K to pY1175 on VEGFR-2 phosphorylates 

PI3K from phosphatidylinositol bisphosphate 

(PIP2) to generate phosphatidylinositol 

triphosphate (PIP3). Phosphorylation of PI3K, 

together with phosphorylation by 3-

phosphoinositide-dependent protein kinase 1 

(PDK1), activates AKT, the central sensor of the 

PI3K pathway.(65) Activated AKT can 

phosphorylate mTOR to either activate 

mammalian target of rapamycin complex 1 

(mTORC1) directly or indirectly by 

phosphorylating tuberous sclerosis complex 2 

(TSC2) towards the activation of mTORC1.(66) 

mTOR signaling is the net effector of AKT, 

resulting in protein synthesis related to the 

aforementioned cellular processes, as illustrated 

in Figure 6.(67)  
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Figure 6. The main signaling pathways in rheumatoid arthritis: NF-ĸB, MAPK, PI3K/AKT, Wnt, JAK/STAT. 

Reproduced from Zhu et al.(67) under the terms and conditions of the Creative Commons Attribution (CC BY) 

license (http://creativecommons.org/licenses/by/4.0/) 

 

 

Active PI3K/AKT signaling is constitutively 

observed in ECs and FLS during RA 

pathogenesis.(68) Li et al.(69) demonstrated that 

HIF-1α regulates the migration and invasion of 

FLS via the activation of PI3K/AKT signaling. In 

addition, PI3K/AKT upregulation promotes 

synovial hyperplasia through increased 

proliferation and survival of FLS.(68) PI3K/AKT 

inhibitors such as baicalein have been shown to 

inhibit cell viability and induce apoptosis in 

hypoxic RA-FLS.(70) Therefore, inhibition of 

PI3K/AKT, a critical regulator of angiogenesis, 

could significantly affect RA pathogenesis. 

 

Nuclear factor-kappa B (NF-κB) pathway 

Nuclear factor-kappa B is a transcription 

factor that is involved in inflammatory arthritis.(71) 

It exists as either a homo- or heterodimer and 

comprises NF-ĸB1 (p50), NF-ĸB2 (p52), RelA 

(p65), RelB, and c-Rel proteins.(72) Nuclear factor-

kappa B  is activated by multiple stimuli, 

including cytokines (e.g., TNF-α and IL-1β), 

microbial components, and environmental 

stress.(73) The canonical (classical) and 

noncanonical (alternative) pathways are two 

distinct pathways that lead to NF-κB activation. 

The canonical pathway for chronic inflammation 

in RA is well-established.  

In general, inactive NF-κB is sequestered in 

the cytoplasm by an inhibitor of nuclear factor-

kappa B (IκBα) protein. During cell activation, 

IκBα undergoes degradation mediated by IκB 

kinases (IKKs), leading to the translocation of 

NF-κB dimers (p50-p65) into the nucleus to 

regulate gene transcription (74), as illustrated in 

Figure 6. Nuclear factor-kappa B, found in 

rheumatoid synovium, plays a role in controlling 

the transcription of numerous pro-inflammatory 

genes. These genes include those encoding 

cytokines such as TNF-α, IL-1, and IL-6, as well 

as chemokines, adhesion molecules, and proteins 

involved in angiogenesis.(75) Blocking the NF-κB 

pathway suppresses the production of various pro-

inflammatory cytokines, such as IL-1, TNF-α, 

IL6, IL-8, ICAM-1, and VCAM-1, which play a 

role in synovitis.(76) Moreover, the NF-κB 

pathway is critical for the proliferation and 

survival of FLS, as demonstrated in several 

studies.(74) The central role of NF-κB in regulating 

gene transcription and survival of FLS in RA has 

made it an active target for the development of 

inhibitory agents such as TNF-α and interleukin 

antagonists.(77) 
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Mitogen-activated protein kinase (MAPK) 

pathway 

Mitogen-activated protein kinase signaling 

cascades comprise three groups of protein 

kinases: extracellular signal-regulated kinase1/2 

(ERK1/2), c-Jun N-terminal kinase (JNK), and 

p38.(78) ERK1/2 in MAPK signaling is activated 

upon stimulation by tyrosine kinase receptors 

(RTKs), which primarily regulate cell 

proliferation and differentiation.(79) ERK1/2 is 

activated through phosphorylation of mitogen-

activated protein kinase (MEK)1/2, an effector of 

upstream MAPKKK activation (represented by 

Raf).(80) Upon translocation into the nucleus, 

activated ERK phosphorylates its downstream 

substrates to induce gene transcription and 

cellular function, as illustrated in Figure 6. 

In the ERK pathway, Cdk2 regulates cell 

proliferation, which is also associated with Cyclin 

E and Cyclin A regulates the cell cycle.(81) The 

deregulated ERK pathway, which is well 

established in human cancers,(82) has also been 

implicated in RA.(83) Research has shown that the 

activation of ERK and JNK plays a role in the 

heightened expression of proinflammatory 

cytokines such as IL-6, IL-1β, and TNF-α in 

FLS.(84) JNK, which is activated by upstream 

MAPKKK effectors including MEKK, mixed 

lineage protein kinase, ASK, TAKI, and Tpl2, 

regulates cell proliferation and differentiation. 

The activation of JNK, together with the ERK 

pathway, can stimulate c-Jun, a crucial component 

of activator protein-1 (AP-1), through the 

influence of elevated pro-inflammatory cytokines, 

such as TNF-α and IL-1. Once activated, c-Jun 

can increase the production of enzymes, such as 

MMP-13, which contribute to the degradation of 

cartilage and joint erosion.(85) 

p38 MAPK is the downstream effector of 

MAPK signaling and consists of four isoforms: 

p38 MAPKα, -β, -γ, and -δ. TNF-α, IL-1, and IL-

6 are major stimuli for p38 MAPK activation.(86) 

In the cytoplasm, p38 MAPK is activated by 

MKK3 and MKK6 and occasionally by MKK4 

when the upstream MAPKKK is stimulated.(87) 

Activated p38 MAPK phosphorylates 

downstream substrates, resulting in gene 

transcription and cellular responses.(88) In mouse 

models, joint inflammation has been linked to the 

activation of p38 MAPK owing to the 

overexpression of systemic TNF-α.(89)  Within 

synovial microvessels, VEGF leverages the p38 

MAPK pathway to transmit growth-promoting 

signals to endothelial cells, thereby stimulating 

their proliferation. This function complements 

VEGF's vital roles in chemoattraction, 

vasodilation, and angiogenesis amid synovial 

inflammation.(90) Moreover, p38 MAPK 

influences NF-κB-driven transcription once it 

enters the nucleus,(74) thereby contributing to 

chronic inflammation.(90) 

 

Wingless-related integration site (Wnt) 

signaling pathway 

Wingless-related integration site  proteins, 

encoded by 19 different genes in humans, are a 

family of highly conserved, cysteine-rich 

glycoproteins that act as potent angiogenic 

factors.(91) These Wnt ligands play critical roles in 

embryonic development and are involved in 

chronic inflammation, such as cancers and 

immune disorders.(92) Wnt proteins signal via two 

pathways: the canonical Wnt/β-catenin-dependent 

pathway and the noncanonical Wnt/β-catenin-

independent pathway, by binding to cell surface 

co-receptors, such as a complex of Frizzled 

receptors and low-density lipoprotein receptor-

related proteins 5 or 6 (LRP5/6), to activate gene 

transcription.(67) The Wnt1 class ligands, which 

include Wnt2, Wnt3, Wnt3a, and Wnt8a, signal 

through the canonical Wnt pathway,(93) playing a 

critical role in regulating cell proliferation, 

survival, and cell fate decisions.(94) In contrast, 

Wnt5a-type proteins, such as Wnt4, Wnt5a, 

Wnt5b, Wnt6, Wnt7a, and Wnt11, can initiate 

noncanonical Wnt signaling,(93) which governs 

processes such as cell division, polarity, and 

migration.(94)  

Accumulating evidence suggests that the 

Wnt signaling pathway contributes to FLS 

activation, bone resorption, and joint damage in 

RA.(95) In the absence of canonical Wnt ligands, 

β-catenin levels are kept low in the cytosol by the 

β-catenin destruction complex, which includes 

glycogen synthase kinase-3β (GSK-3β), casein 

kinase Iα (CKIα), adenomatous polyposis coli 

(APC), and axin.(94) During cell activation, Wnt 

ligands bind to the co-receptor complex of 

Frizzled receptors and LRP5/6, and inhibit GSK-

3β activity via the disheveled (Dvl) protein. This 

inhibition prevents β-catenin degradation, 

allowing it to enter the nucleus and regulate gene 

transcription (Figure 6).(67,94) β-catenin, a central 

protein in the canonical Wnt signaling pathway, 

serves dual roles in cell adhesion and transcription 

regulation, which may influence cartilage 

degradation.(96, 97) The canonical Wnt signaling 

positively influences the proliferation and 

activation of FLS,(97, 98) making it a potential 

therapeutic target in RA. In contrast to canonical 
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Wnt signaling, noncanonical ligands such as 

Wnt5a can promote an aggressive phenotype of 

RA FLS (enhanced migration and invasiveness), 

which occurs through the activation of the RYK 

receptor and involves the Wnt/Ca2+ pathway, 

Rho/ROCK signaling, and downstream kinases 

such as p38 and ERK.(99) 

 

JAK/STAT signal transduction pathways 

Janus kinase/signal transduction and 

transcription activation (JAK/STAT) is a signal 

transduction pathway that integrates external 

stimuli into the nucleus for gene transcription.(100) 

Under physiological conditions, the JAK/STAT 

signaling pathway is strongly regulated by its 

negative regulators, including suppressor of 

cytokine signaling (SOCS), protein inhibitor of 

activated STAT (PIAS), and protein tyrosine 

phosphatases (PTPs).(101) Various pro-

inflammatory cytokines (e.g., IL-4, IL-6, IL-7, IL-

12, IL-15, and IL-21), interferon-gamma (IFN-γ), 

and granulocyte-macrophage colony-stimulating 

factor (GM-CSF), which are responsible for 

regulating the immune response in RA, are 

dependent on JAK/STAT for biological outcomes 

such as cellular growth, survival, and 

differentiation.(102) Deregulated JAK/STAT 

signaling can lead to elevated levels of these pro-

inflammatory cytokines, as commonly observed 

in rheumatoid synovium.(103)  

Janus kinases are tyrosine kinases 

comprising four members: JAK1, JAK2, JAK3, 

and tyrosine kinase 2 (TYK2).(104) Ligation of 

cytokines, interferons, and growth factors to their 

respective receptors can activate JAKs.(105) 

Activated JAKs selectively associate with type I 

and type II cytokine receptors, leading to the 

phosphorylation and activation of cytoplasmic 

STATs. Once phosphorylated, STATs dimerize 

and translocate to the nucleus to initiate gene 

transcription (Figure 6).(106) The STAT family 

comprises seven members: STAT1, STAT2, 

STAT3, STAT4, STAT5A, STAT5B, and 

STAT6.(107) Although multiple ligands can 

activate a single STAT, certain cytokines can 

preferentially activate specific STAT molecules. 

For example, IFN-γ usually activates STAT1, 

whereas IL-4 is exclusive to STAT6. In contrast, 

IL-6 and IL-10 appear to favor the activation of 

STAT3.(108) Incidentally, these preferences create 

nonredundant biological roles.(109) 

While STAT1 and STAT2 predominantly 

mediate the IFN-initiated JAK/STAT pathway 

and are closely associated with the immune 

response to infections,(110) other STATs are active 

in various cytokine-induced signaling 

pathways.(109) In contrast, STAT3 and STAT5 are 

typically associated with hematological disorders, 

solid organ malignancies, and autoimmune 

diseases.(111) As hypoxia is also a feature of 

inflamed synovium,(28) modulation of the 

JAK/STAT pathway could be another way to 

block aberrant cytokine signals in the 

pathophysiology of RA. Tofacitinib (selective 

JAK1 and JAK3 inhibitor), baricitinib (reversible 

inhibitor of JAK1 and JAK2), and upadacitinib 

(selectivity for JAK1) are among the JAK 

inhibitors approved by the FDA for the treatment 

of RA.(112-114) Other JAK inhibitors, such as 

GLPG0634 (JAK1, JAK2, and TYK2 inhibitors) 

and VX-509 (JAK3 inhibitor), are undergoing 

phase II clinical trials for the treatment of RA.(109) 

 
Nano-targeted therapeutic strategies 

Nanomedicines designed based on two key 

mechanisms—targeting activated stromal cells 

and targeting specific removal of pro-angiogenic 

mediators—hold promise for effectively 

inhibiting RA-associated angiogenesis at its 

source.(115) Different treatment approaches for RA 

are available depending on the disease's 

advancement and medical history. Although RA 

has no cure to date, its treatment goals are to 

reduce and manage pain and delay disease 

progression.(116) As treatments work efficiently at 

the onset of this disease, managing early signs is 

of great importance to benefit from each 

therapy.(117) In general, RA treatments range from 

conventional oral drug regimens to invasive 

procedures such as injections and surgery. 

 

Surgery 

Advances in surgical procedures have 

dramatically improved the clinical outcomes in 

most RA cases. Patients with advanced RA often 

require painful orthopedic procedures, including 

tenosynovectomy, osteotomy, and total joint 

arthroplasty. Despite improvements in clinical 

outcomes, these procedures do not spare 

management issues related to postoperative 

articular infections and delayed wound 

healing.(116) 

 

Conventional drug therapies 

Nonsteroidal anti-inflammatory drugs 

(NSAIDs) (e.g., celecoxib, naproxen, and 

rofecoxib) are commonly used for early 

management of chronic pain secondary to 

inflammation.(118) These anti-inflammatory agents 

block the production of prostaglandins (PGs) by 
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inhibiting the cyclooxygenase (COX) 

pathway.(119) Celecoxib, the first approved 

selective COX-2 inhibitor for pain management, 

has improved clinical outcomes in early RA.(120) 

Despite their clinical effectiveness, NSAIDs are 

associated with major toxicities and risk of 

gastrointestinal, renal, and cardiovascular 

events.(121)  

 Patients with RA often receive multiple 

medications to control disease activity. 

Glucocorticoids (GCs) have been widely used to 

treat RA since the 1950s. These steroid hormones 

bind to glucocorticoid receptors and effectively 

suppress inflammatory mediators such as 

cytokines, chemokines, growth factors, and their 

receptors.(122) Synthetic GCs are administered via 

articular injections for local inflammation. 

Although GCs are more potent than NSAIDs, they 

cause greater side effects, including bone 

thinning, diabetes, and immunosuppression.(116) 

Although the clinical advantage of GCs is often 

less significant, these drugs, particularly 

prednisone, cause drug dependency.(123) Owing to 

their contraindications, these agents are deemed 

impractical for long-term treatment of RA.(90) 

 

Therapeutic shift in RA: from conventional 

DMARDs to biologic, targeted synthetic 

DMARDs, and emerging nanoagents 

The transition from NSAIDs to disease-

modifying antirheumatic drugs (DMARDs), 

along with current biologic, targeted synthetic 

DMARDs(13), and nano-based therapies, has 

revolutionized the treatment of RA. DMARDs are 

immunomodulatory agents classified as 

conventional synthetic DMARDs (csDMARDs) 

(e.g., methotrexate, leflunomide, sulfasalazine, 

and hydroxychloroquine), biologic DMARDs 

(bDMARDs) (e.g., infliximab, tocilizumab, and 

abatacept), and more recently targeted synthetic 

DMARDs (tsDMARDs) (e.g., tofacitinib, 

baricitinib, and upadacitinib),(112,124) and nano-

based agents (e.g., ozoralizumab).(125) 

csDMARDs were the standard treatment for RA 

until recently, when bDMARDs, tsDMARDs, and 

nano-based agents were discovered, which altered 

the treatment approach to a treat-to-target 

strategy. The bDMARDs and tsDMARDs are 

typically chosen when csDMARD therapy 

fails,(124, 126) whilst emerging nano-based agents 

may enhance existing treatments.(125, 127-129) 

 Both bDMARDs and tsDMARDs are 

highly specific biological agents that target the 

immune pathways. bDMARDs are monoclonal 

antibodies targeting tumor necrosis factor (TNF)-

α (anti-TNF-α, such as infliximab, adalimumab, 

and certolizumab) and interleukin (IL)-6 receptor 

(anti-IL6R, such as tocilizumab).(126,130) At 

present, bDMARDs are available as subcutaneous 

or intravenous injections, owing to their size 

(90,000–150,000 Da). These agents interact by 

binding to extracellular molecules (e.g., cytokine 

receptors and co-stimulating molecules) to 

activate or inhibit intracellular signaling.(13) In 

contrast, tsDMARDs are orally available small-

molecule inhibitors of JAK (i.e., tofacitinib, 

baricitinib, and upadacitinib) with the ability to 

inhibit intracellular signaling components because 

they have a lower molecular weight than 

bDMARDs.(114,131) Tofacitinib (selectivity for 

JAK1 and JAK3) was the first tsDMARD 

approved in the United States (2012) and Europe 

(2017), followed by baricitinib (selectivity for 

JAK1 and JAK2) in 2018, and upadacitinib 

(selectivity for JAK1) in 2019.(112) JAK inhibitors 

have efficacy and safety profiles comparable to 

those of bDMARDs.(113, 114)  

Although the approval for bDMARDs and 

tsDMARDs is primarily for monotherapy, in 

some cases, their combined use with csDMARDs 

presented better clinical outcomes. In recent 

years, treatment with either bDMARDs or 

tsDMARDs in combination with csDMARDs, 

particularly methotrexate, has significantly 

improved radiographic progression, thereby 

affecting clinical remission (low disease 

activity).(114,132) However, the cost of combined 

therapy is high, and it is often prescribed only 

when the patient responds ineffectively to 

monotherapy.(132)  

Recently, nano-based agents have offered 

new hope for refining the existing biological 

therapies for RA. Ozoralizumab, a next-

generation anti-TNF-α nanoantibody, was the first 

TNF-α targeting nanoagent to be approved by 

Japan in September 2022.(125,133) This 

subcutaneously administered nanoantibody has a 

structure markedly distinct from traditional 

therapeutic antibodies, featuring a small 

molecular size (38 kDa), an albumin-binding 

domain that extends its plasma half-life for 4-

week dosing intervals,(127) and a unique 

configuration that increases avidity.(133) This 

trivalent nanoantibody, using a variable heavy-

chain format without Fc regions, can bind to 

multiple targets simultaneously.(125,133) In non-

clinical studies, ozoralizumab showed rapid 

biodistribution into joints,(134) reduced Fcγ 

receptor-mediated inflammation,(135) and 

demonstrated high binding affinity to TNF-α.(136) 
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Findings from early proof-of-concept/dose-

finding trials (NCT00959036; NCT01007175; 

NCT01063803) support its good efficacy and 

tolerability in patients with RA,(137,138) guiding the 

way for a long-term extension study on optimal 

dosing (NCT04077567; JapicCTI-194932).(123,127)   

Most other nanotherapies for RA, however, 

are still in the preclinical or early developmental 

stages. These include nano-based co-delivery 

systems (e.g., liposomes, polymeric 

nanoparticles, and gold nanoparticles),(129) 

immunomodulatory nano-preparations (e.g., RA-

related self-antigens, nucleic acids, 

immunomodulators or cytokines, and telogenic 

nanoparticles),(128) and energy-conversion 

nanoparticles (e.g., light- or ultrasound-

activated)(139), which have been demonstrated in 

animal models and/or laboratory settings. The 

currently approved bDMARDs, tsDMARDs, and 

nanoagent therapies for RA are summarized  in 

Table 2.    

 

 

Table 2. Currently approved bDMARDs, tsDMARDs, and nanoagents and their role in angiogenesis 

of rheumatoid arthritis 

bDMARDs Mechanism of action Anti-angiogenic role in RA References 

Infliximab TNF-α inhibition Inhibition of serum VEGF levels in 

RA patients 

Selaas et al. (140) 

 

Golimumab TNF-α inhibition Inhibition of serum IL-6, TNFRII, 

MMP-3 level in RA 

Doyle et al. (141) 

 

Adalimumab TNF-α inhibition Inhibition of serum MMP-3 levels 

in RA patients 

Hattori et al. (142) 

 

Certolizumab TNF-α inhibition Suppression on endothelial cell 

activity by inhibiting TNF-α 

Shu  et al. (143) 

 

Etanercept TNF-α inhibition and TNF-

β inhibition 

Improved endothelial dysfunction 

in RA patients 

Végh et al. (144) 

 

Tocilizumab IL-6 receptor inhibitor Inhibition of IL-6 induced 

expression of TLR2, TNF-α, IL-1β, 

IL-8, MCP-1, VEGF, VCAM-1, 

and ICAM-1 in monocytes from 

RA patients 

Ruiz-Limón et 

al.(145) 

 

Abatacept Inhibition of T cell 

activation by blocking 

CD80/CD86 receptor 

interaction with CD28 

Reduction of proteasome 

immunosubunit β1i in T cells of 

patients with RA 

Langdon et al.,(146) 

Ghannam et al.   (147) 

 

Anakinra IL-1 receptor inhibitor Angiogenesis inhibition in animal 

models 

Cantatore FP et al. 
(10) 

 

tsDMARDS    

Tofacitinib Selective JAK1 and JAK3 

inhibitor 

Reducing hyperplastic intima, 

inhibiting T cell proliferation, and 

minimizing IFN-γ, IL-17, and IL-21 

Hodge et al.  (148) 

 

Baricitinib Reversible JAK1 and 

JAK2 inhibitors  

Inhibition of IL-6, IL-22, IL-23, 

IFN-γ, IL-17 (evaluation in an 

animal model of arthritis and in 

cell-based assays) 

Al-Salama et al. (149) 

 

Upadacitinib Selective JAK1 inhibitor Inhibition of JAK1 signaling, and 

inhibition of IL-6 and IFN-γ 

mediated inflammatory responses 

Duggan and 

Keam(112) Chaplin 

(131) 

 

Filgotinib ATP-competitive, 

reversible JAK1 

preferential inhibitor 

Selectively inhibits the activity of 

JAK1 (> 5-fold higher potency) 

over JAK2, JAK3 and TYK2 

Guo et al. (151) 

 

Nanoagents    

Ozoralizumab TNF-α inhibition  Inhibition of TNF-α activity Keam, (125)  

Ishiwatari-Ogata et 

al.  (136) 
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Limitations of current therapies 

Despite the advancements in current 

therapies, several shortcomings have emerged. 

While some patients reported benefiting from the 

prescribed treatments, others experienced a risk of 

toxicity and intolerance.(113) Approximately one-

third of patients have also been reported to be less 

responsive to drugs, particularly those prescribed 

TNF inhibitors, such as etanercept, infliximab, 

and adalimumab.(14) Indeed, patient responses to 

these agents are not uniform, with considerable 

variability in efficacy and toxicity.(151) 

Undoubtedly, individualized therapy via the 

concept of pharmacogenomics has better promise 

for selecting medications and dosages precisely 

for individual patients. Unfortunately, at present, 

pharmacogenetic/pharmacogenomic tests are not 

commonly conducted because of several factors, 

including the variability of RA, limited 

understanding of the disease pathogenesis, small 

sample sizes, and other non-genetic factors (such 

as demographic, environmental, clinical, or 

serological markers) that may affect or predict a 

drug's effectiveness or toxicity in patients with 

RA.(152) As both bDMARDs and tsDMARDs are 

immunosuppressants, opportunistic infections are 

another concern.(153,154) Regarding JAK inhibitors, 

the most current drugs for RA therapy, the risk of 

cardiovascular events, thrombosis, and 

malignancy have been reported.(155,156) 

Undeniably, prescriptions for these drugs should 

consider the increasing comorbidities among 

elderly patients. However, access to DMARDs 

varies according to demographic factors, 

socioeconomic status, and geographical 

location.(124) These limitations have encouraged 

investigations into innovative future therapeutic 

methods, especiallyfor patients who do not 

respond to current therapies. Nano-based 

technologies may improve existing treatments; 

however, most research remains primarily in the 

developmental stages.(128, 129, 139) Cell-based 

therapies and gene-editing technologies may offer 

opportunities for the implementation of 

personalized medicine in advanced RA 

treatment.(157) 

 

CONCLUSION 

 

Angiogenesis in RA involves multiple 

stromal cells and soluble factors. With the yearly 

increasing RA cases and recent findings 

indicating that 40% of RA cases can be linked to 

exposure to potentially modifiable factors, it is 

appropriate to prevent further disease 

development by considering the changes.(158) 

Moreover, owing to the highly varied nature of 

RA, creating a universally effective treatment plan 

is challenging, because of the ubiquitous fact that 

its symptoms and disease progression vary among 

RA patients. Consequently, developing 

personalized treatment plans for each patient 

could enhance the effectiveness and efficiency of 

medical strategies, thereby reducing the reliance 

on trial-and-error methods to determine suitable 

medications for individuals. 
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