Potential of turmeric rhizome essential oils against *Aedes aegypti* larvae

Roselina Panghiyangani*, Leni Marlinae**, Isnaini*** and Fauzi Rahman**

ABSTRACT

BACKGROUND
Dengue hemorrhagic fever (DHF) has long been a serious health problem in Indonesia, including Kalimantan (Borneo), as is evident from the increased case fatality rate in Banjarbaru city. Synthetic chemical insecticides have frequently been used to eradicate mosquitoes, but are toxic to the body and resistance of adult and larvae mosquito *Aedes aegypti* has been reported. The present study aims to assess the effect of essential oils of turmeric rhizomes (*Curcuma domestica* Val) against *Aedes aegypti* larvae

METHODS
This was an experimental study of post test one group design, performed in two phases, using *Aedes aegypti* larvae as test organisms. In the first phase, laboratory-reared larvae were used for calculation of the LC$_{50}$ and LC$_{90}$, while in the second phase the test organisms were larvae taken from 75 buildings that had been designated based on a preliminary survey in four sub-districts in Banjarbaru city with a high incidence of dengue cases. Probit analysis of was used to calculate LC$_{50}$ and LC$_{90}$ and the Kruskal-Wallis test to determine the larvicidal potency of turmeric rhizome essential oils.

RESULTS
This study demonstrates that turmeric rhizome essential oils effectively killed laboratory-reared *Aedes aegypti* larvae at an LC$_{50}$ of 9.239 ppm and an LC$_{90}$ of 13.565 ppm. The effectiveness of the essential oils of turmeric rhizomes (*Curcuma domestica* Val.) for killing *Aedes aegypti* larvae in residential areas was 68%.

CONCLUSION
Turmeric (*Curcuma domestica* Val.) rhizome essential oils can kill *Aedes aegypti* larvae, are environment friendly and can be used for the control of mosquitoes.

Keywords: turmeric rhizome essential oils, larvicidal, *Aedes aegypti* larvae
Potensi larvisida minyak atsiri rimpang kunyit terhadap larva Aedes aegypti

LATAR BELAKANG

METODE
Rancangan penelitian yang digunakan adalah eksperimental dengan pendekatan post test one group design. Objet penelitian adalah larva Aedes aegypti. Tahap pertama larva yang digunakan dari hasil kolonisasi di laboratorium untuk menghitung LC50 dan LC90 dan tahap kedua larva diambil dari 75 rumah yang sudah ditetapkan berdasarkan survey pendahuluan di empat kecamatan di wilayah Kota Banjarbaru yang mengalami kasus DBD tinggi. Analisis data yang digunakan adalah uji probit untuk menghitung LC50 dan LC 90, dan uji Kruskal-Wallis untuk menguji daya larvisida minyak atsiri rimpang kunyit.

HASIL
Studi ini menunjukkan bahwa minyak atsiri efektif membunuh larva Aedes aegypti yang ditangkap di laboratorium, dengan LC50 sebesar 9,239 ppm dan LC90 sebesar 13,565 ppm. Efektivitas minyak atsiri rimpang kunyit (Curcuma domestica Val.) untuk membunuh larva Aedes aegypti di lingkungan perumahan adalah 68%.

KESIMPULAN
Minyak atsiri rimpang kunyit (Curcuma domestica Val.) mampu membunuh larva Aedes aegypti, ramah terhadap lingkungan sehingga dapat digunakan untuk pengendalian nyamuk.

Kata kunci: Minyak atsiri rimpang kunyit, larvisida, larva Aedes aegypti

INTRODUCTION
Dengue hemorrhagic fever (DHF) is a disease caused by the dengue virus and transmitted by Aedes aegypti and Aedes albopictus mosquitoes. In Indonesia DHF has been a public health problem for the last 41 years. The number of provinces and districts endemic for DHF has increased from 2 provinces dan 2 cities in 1968 to 32 provinces (97%) and 382 districts (77%) in 2009. In 2007, 2008 and 2009 the number of DHF cases occurring was 158 115, 137.468 and 158.912, respectively.(1) The incidence rates in South Kalimantan was 35.59/100,000 inhabitants in 2007, 14.44/100.000 inhabitants in 2008, and 11.26/100,000 in 2009 (January-September). In Banjarbaru city the incidence rate in the years 2007–2009 was 45.10/100,000, 34.30/100,000, and 52.09/100,000, respectively, while in 2010 (from January until September) the incidence rate was 113.9/100,000 inhabitants. The case fatality rate (CFR) of DHF in Banjarbaru city was as follows: 1.9% (2006), 1.8% (2007), 1.9% (2008), 5.11% (2009), and 2% (until September 2010).(2-3)
At present there are no drugs and vaccines available for dengue virus eradication in connection with DHF prevention. The disease may be most appropriately managed by eradicating the mosquito vectors. Eradication of Aedes aegypti may be conducted by killing mosquito larvae by means of larvicides. The most widely used larvicide for control of Aedes aegypti larvae is Temefos 1% (Abate 1SG). \(^{(4-6)}\)

Synthetic insecticides are used by the community because they are practical in use and rapid in action. However, the use of synthetic insecticides has not led to a reduction in DHF rates. On the contrary, there are reports from many countries about the occurrence of insecticide resistance, environmental pollution, and contamination of humans and animals. Most of the available synthetic insecticides kill only adult mosquitoes, and only a few kill mosquito larvae. \(^{(7-9)}\) Previous studies have demonstrated that several plants, such as turmeric (Curcuma domestica Val.), are a potential alternative source of bioactive phytochemicals for killing Aedes aegypti larvae. \(^{(10-12)}\) These plant-derived insecticides may be expected to succeed in replacing conventional insecticides, as they are believed to be target-selective or target-specific. In contrast to synthetic insecticides, these phytochemicals are degradable to nontoxic compounds, thus minimizing the harmful effects on humans and animals, and contributing to a higher degree of environmental safety by minimizing the accumulation of harmful residues in the environment. For this reason, they are also potentially suitable for use in the continuation of integrated mosquito control programs. \(^{(13-15)}\)

Based on the abovementioned considerations, the study and development of alternative larvicides that are environment-friendly is clearly indicated to decrease the use of synthetic insecticides. These plant-derived larvicides are expected to result in a reduction of the number of DHF cases in South Kalimantan, especially in Banjarbaru City. The alternative candidate larvicides used in the present study are derived from indigenous Indonesian plants, such as turmeric, which is readily available, inexpensive, and highly effective. In 2009, Panghiyangani et al. \(^{(11)}\) concluded that 0.4% ethanolic extract of turmeric rhizome (Curcuma domestica Val.) was an effective larvicide against Aedes aegypti in residential areas of Banjarbaru. Other studies demonstrated that the essential oils contained in a number of medicinal plant parts, such as the leaves of Pandanus spp., sirih (Piper betle Linn), lemon grass (Andropogon nardus), Eucalyptus cinerea, and the rhizomes of white turmeric (Curcuma zedoaria), were capable of killing Aedes aegypti larvae. \(^{(8,16,17)}\) The aim of the present study was to evaluate the effects of turmeric rhizome essential oils (Curcuma domestica Val) on Aedes aegypti larvae.

METHODS

Design of study

The study was of experimental design using a post test control group approach and was conducted from May to November 2010.

Extraction of turmeric rhizome essential oils

Approximately 10 kg of turmeric (Curcuma domestica Val.) rhizomes was cut into small pieces and placed in the steam distillation apparatus containing 10 liter water, and connected to a condensor. The steam distillation apparatus was then heated, with steps being taken to avoid overheating and to maintain the flow of steam to the condensor. The condensor was kept cool by external packing with ice, to ensure condensation of all essential oils in the water phase.

The oil-and-water mixture in the distillate was subsequently separated by means of a separatory funnel. For a complete separation, sodium chloride was added to the distillate. The water phase was collected in an erlenmeyer flask for further separation of remaining traces of oils, and after addition of sodium chloride the water was decanted, then separated in the separatory funnel. \(^{(18)}\)
Larvicide bioassay

The study was performed in 2 stages, with the first stage performed in the laboratory using laboratory-reared larvae for determination of LC$_{50}$ and LC$_{90}$, to serve as the basis for calculating the treatment dosage to be used in the field. For a mortality of *Aedes aegypti* larvae between 0% and 20%, the number of deaths in the intervention groups was corrected using Abbot’s formula:(19,20)

\[
AI = \frac{\% \text{ intervention mortality} - \% \text{ control mortality}}{100 - \% \text{ control mortality}} \times 100
\]

AI: mean corrected percentage of deaths of test larvae

The control groups were 2 in number, i.e. positive controls (abate 1%) and negative controls sodium carboxymethylcellulose (CMC-Na) 0.5%. There were seven intervention groups, each consisting of 25 larvae, to whom the essential oils were administered at concentrations of 3.45, 6.9, 13.79, 27.5, 55, 110, and 220 ppm, respectively. The treatment was replicated three times and the larvae were observed for 24 hours. The second phase of the larvicidal potency test used *Aedes aegypti* larvae collected from 75 buildings selected in preliminary surveys, and consisting of 3 groups of 25 larvae, i.e. positive controls, negative controls, and the intervention group receiving turmeric essential oils at a concentration of 13.565 ppm, based on the LC$_{90}$ obtained in the first stage of this study, on the expectation of 100% larval mortality. These larvae were also observed for 24 hours.

The effectiveness of turmeric rhizome (*Curcuma domestica* Val.) essential oils in comparison to the positive control groups (Temefos 1%) was calculated with the following formula:

\[
\text{Effectiveness} = \frac{\text{Mean mortality of intervention larva}}{\text{Mean mortality of control larva}} \times 100
\]

Statistical analysis

Probit analysis was performed using SPSS 17 to calculate LC$_{50}$ and LC$_{90}$ values and the Kruskal-Wallis test for determining larvicidal potency of turmeric rhizome essential oils against *Aedes aegypti* larvae, at a significance level of 5%.

RESULTS

Probit analysis found an LC$_{50}$ value of 9.239 ppm and an LC$_{90}$ of 13.565 ppm, as shown in Table 1. Larval mortality in the group given turmeric rhizome essential oils was 65.22%, after Abbot’s correction.

The results of the larvicidal assay of turmeric rhizome essential oils against *Aedes aegypti* are shown in Table 2. The results of the Kruskal-Wallis test showed a significant difference in larval mortality between the three treatment groups (p=0.021). Larval mortality in the group given essential oils was 22% (17/75), which was significantly lower than the larval mortality of 33% (25/75) in the group given Abate 1%. The effectiveness of turmeric (*Curcuma domestica* Val.) rhizome essential oils as larvicide, in comparison with the positive control group (Temefos 1%) was 0.68.

DISCUSSION

The first phase of this study found LC$_{50}$ and LC$_{90}$ values of 9.239 ppm and 13.565 ppm, respectively, for turmeric (*Curcuma domestica* Val.) rhizome essential oils as larvicide (Table 1). The LC$_{50}$ in our study was lower than the 54.5 ppm for the LC$_{50}$ of white turmeric essential oils.(21) A Thai study also found the higher LC$_{50}$ value of 36.30 ppm for *Curcuma aromatica* essential oils.(15) Thus our differing study results show that turmeric essential oils have a lower larvicidal effect than that of *Curcuma aromatica*.

The results of Kruskall-Wallis test showed that turmeric essential oils had the capacity to kill *Aedes aegypti* larvae, although their potency...
Table 1. Distribution of larvical activity of turmeric rhizome essential oils against *Aedes aegypti*

<table>
<thead>
<tr>
<th>Probability</th>
<th>95% Confidence Limits</th>
<th>Estimate</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROBIT(a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.010</td>
<td></td>
<td>1.384</td>
<td>-1.010</td>
<td>2.943</td>
</tr>
<tr>
<td>.020</td>
<td></td>
<td>2.305</td>
<td>.170</td>
<td>3.719</td>
</tr>
<tr>
<td>.030</td>
<td></td>
<td>2.889</td>
<td>.915</td>
<td>4.215</td>
</tr>
<tr>
<td>.040</td>
<td></td>
<td>3.328</td>
<td>1.472</td>
<td>4.592</td>
</tr>
<tr>
<td>.050</td>
<td></td>
<td>3.685</td>
<td>1.922</td>
<td>4.901</td>
</tr>
<tr>
<td>.060</td>
<td></td>
<td>3.989</td>
<td>2.304</td>
<td>5.165</td>
</tr>
<tr>
<td>.070</td>
<td></td>
<td>4.256</td>
<td>2.637</td>
<td>5.399</td>
</tr>
<tr>
<td>.080</td>
<td></td>
<td>4.495</td>
<td>2.934</td>
<td>5.610</td>
</tr>
<tr>
<td>.090</td>
<td></td>
<td>4.712</td>
<td>3.202</td>
<td>5.803</td>
</tr>
<tr>
<td>.100</td>
<td></td>
<td>4.912</td>
<td>3.448</td>
<td>5.981</td>
</tr>
<tr>
<td>.150</td>
<td></td>
<td>5.739</td>
<td>4.453</td>
<td>7.636</td>
</tr>
<tr>
<td>.200</td>
<td></td>
<td>6.397</td>
<td>5.230</td>
<td>7.356</td>
</tr>
<tr>
<td>.250</td>
<td></td>
<td>6.961</td>
<td>5.880</td>
<td>7.905</td>
</tr>
<tr>
<td>.300</td>
<td></td>
<td>7.468</td>
<td>6.447</td>
<td>8.415</td>
</tr>
<tr>
<td>.350</td>
<td></td>
<td>7.938</td>
<td>6.957</td>
<td>8.903</td>
</tr>
<tr>
<td>.400</td>
<td></td>
<td>8.383</td>
<td>7.428</td>
<td>9.379</td>
</tr>
<tr>
<td>.450</td>
<td></td>
<td>8.814</td>
<td>7.870</td>
<td>9.853</td>
</tr>
<tr>
<td>.500</td>
<td>9.239</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.550</td>
<td></td>
<td>9.663</td>
<td>8.706</td>
<td>10.820</td>
</tr>
<tr>
<td>.600</td>
<td></td>
<td>10.094</td>
<td>9.116</td>
<td>11.326</td>
</tr>
<tr>
<td>.650</td>
<td></td>
<td>10.539</td>
<td>9.531</td>
<td>11.589</td>
</tr>
<tr>
<td>.700</td>
<td></td>
<td>11.009</td>
<td>9.959</td>
<td>12.428</td>
</tr>
<tr>
<td>.750</td>
<td></td>
<td>11.516</td>
<td>10.413</td>
<td>13.051</td>
</tr>
<tr>
<td>.800</td>
<td></td>
<td>12.080</td>
<td>10.910</td>
<td>13.753</td>
</tr>
<tr>
<td>.850</td>
<td></td>
<td>12.738</td>
<td>11.481</td>
<td>14.580</td>
</tr>
<tr>
<td>.900</td>
<td>13.565</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.910</td>
<td></td>
<td>13.765</td>
<td>12.358</td>
<td>15.886</td>
</tr>
<tr>
<td>.920</td>
<td></td>
<td>13.982</td>
<td>12.542</td>
<td>16.164</td>
</tr>
<tr>
<td>.930</td>
<td></td>
<td>14.221</td>
<td>12.744</td>
<td>16.470</td>
</tr>
<tr>
<td>.940</td>
<td></td>
<td>14.488</td>
<td>12.968</td>
<td>16.812</td>
</tr>
<tr>
<td>.950</td>
<td></td>
<td>14.792</td>
<td>13.223</td>
<td>17.204</td>
</tr>
<tr>
<td>.960</td>
<td></td>
<td>15.149</td>
<td>13.522</td>
<td>17.664</td>
</tr>
<tr>
<td>.970</td>
<td></td>
<td>15.588</td>
<td>13.888</td>
<td>18.232</td>
</tr>
<tr>
<td>.980</td>
<td></td>
<td>16.172</td>
<td>14.373</td>
<td>18.988</td>
</tr>
<tr>
<td>.990</td>
<td></td>
<td>17.093</td>
<td>15.133</td>
<td>20.183</td>
</tr>
</tbody>
</table>

Table 2. Mortality percentage of *Aedes aegypti* in the treatment groups

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Negative Controls (n=75)</th>
<th>Turmeric rhizome essential oils (n=75)</th>
<th>Positive Controls (n=75)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Mortality</td>
<td>2</td>
<td>17</td>
<td>25</td>
<td>0.021</td>
</tr>
</tbody>
</table>
was less than that of Temefos 1% (Abate), as not all larvae were killed. This may be due to the use of a concentration killing 90% of the laboratory-reared larvae (LC90) within 24 hours, whereas the test was done in residential areas, the natural habitat of *Aedes aegypti*.

There was a difference in susceptibility between laboratory-reared larvae and wild-type larvae from residential areas with regard to application of turmeric rhizome essential oils. The effectiveness of turmeric (*Curcuma domestica* Val.) rhizome essential oils in killing *Aedes aegypti* larvae from residential areas was two-thirds that of the positive controls. On the basis of the laboratory tests, the results of the effectiveness test should have been more than 68%, because the concentration used was the LC90 (13.565 ppm). There is thus a difference of 22% between laboratory and field test results. Since essential oils are volatile compounds, and the field tests were performed in the afternoon hours without practically any control over the temperature of the respective buildings, it may be surmised that a substantial amount of the essential oils was lost through evaporation when pouring the oils into the test containers. This is in contrast with the laboratory tests, which were performed at controlled lower temperatures, thus minimizing loss of oils through evaporation.

The rhizomes of turmeric (*Curcuma domestica* Val.) contain the following active substances: curcumins, sesquiterpenes, turmerones, volatile oils (essential oils), and zingiberens, turmerols, phellandrenes, camphors, curcumons, and various resins with antibacterial properties. According to the studies of Heyne, derivatives of oxygenated hydrocarbons (phenols) have strong antibacterial properties. Phenolic compounds mainly act by denaturation of cellular proteins and damage to cell membranes. The phenolic content of a substance may result in lysis of larval cells, due to increased permeability of cell membranes, leading to leakage of essential metabolites, while in the cells the phenols disrupt cellular activity. Phenolic compounds act as dessicants, and are contact poisons that kill by inducing a continuous leakage of fluids, causing the larvae that come in contact with these poisons to die from dehydration. A contact poison is a larvicide that enters the larva through the integument and natural orifices (siphons). The larvae die on direct contact with the larvicide. Most contact poisons also act as stomach poisons.

One limitation in this study was that the stability of turmeric rhizome essential oil preparation could not be maintained over time, due to the volatility of the oils.

CONCLUSION

Turmeric rhizome essential oils (*Curcuma domestica* Val.) can kill *Aedes aegypti* larvae from residential areas in several subdistricts in Banjarbaru city. We recommend that the larvicidal effect of turmeric rhizome essential oils on *Aedes aegypti* larvae be utilized in DHF vector control.

ACKNOWLEDGEMENTS

We wish to express our gratitude to Direktorat Penelitian dan Pengabadian kepada Masyarakat Direktorat Jenderal Pendidikan Tinggi Kementerian Pendidikan Nasional for financial support of this study through a STRANAS research grant for the fiscal year 2010/2011, and the Head and research staff of the Entomology Laboratory Loka Penelitian dan Pengembangan Pemberantasan Penyakit Bersumber Binatang-DEPKES RI, Tanah Bumbu, South Kalimantan for the use of their laboratory facilities for this study.

REFERENCES

2. Sukamto. Data kasus demam berdarah dengue (DBD) Per Kabupaten/Kota Propinsi...